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Chapitre 1

Introduction à la logique propositionnelle
et la logique du premier ordre

La logique est au centre du développement des sciences et du bon fonctionnement de la société en
général. L’humain est capable de raisonnement, c’est-à-dire de déduire des faits ou de nouvelles
connaissances, à partir d’autres faits. On qualifie d’esprit « logique » une personne capable d’agir
avec cohérence et rigueur, de raisonner correctement. Les mathématiques constituent le langage
commun des sciences, et la logique est le fondement des mathématiques. L’informatique a été
fondée dans les années 30 en tentant de résoudre un problème fondamental de la logique, proposé
par David Hilbert et Wilhelm Ackermann en 1928, soit de déterminer si une formule quelconque est
un théorème (Entscheidungsproblem en allemand). Ce problème a été résolu par Alonzo Church et
Alan Turing, de manière indépendante, en 1935 et 1936. Ils ont démontré que cela était impossible
en général. Ces travaux ont nécessité le développement de la notion d’algorithme et d’ordinateur,
sous la forme de la machine de Turing1 (par Turing) et du λ-calcul (par Church et Kleene). Le
λ-calcul est le fondement des langages de programmation fonctionnelle comme Lisp, F#, Haskell et
Scala. La logique date d’Aristote (384—322 avant J.-C..), mais sa version moderne date de la fin
du 19ième au début du 20ième siècle. Ses pionniers furent Boole, De Morgan, Frege, Peano, Peirce,
Whitehead, Russell, Hilbert, Ackermann, Gödel, ainsi que plusieurs autres.

La logique permet principalement deux choses:

1. exprimer de manière formelle des faits;

2. déduire de manière formelle de nouveaux faits.

L’adjectif formel utilisé ici signifie « sans ambiguïté » , « avec rigueur » , « objectif » (par opposition
à « subjectif » ), « calculable » , « analysable par une machine » . Les faits sont exprimés comme des

1Alan Turing (1912—1954) est devenu « célèbre » en 2015 suite au très populaire film The imitation game qui
raconte le développement par Alan Turing d’une machine pouvant déchiffrer le code Enigma utilisé par les allemands
durant la deuxième guerre mondiale, et qui se mérita l’Oscar du meilleur scénario adapté. L’équivalent du prix
Nobel en informatique, le ACM Turing Award, est nommé en l’honneur d’Alan Turing, qui est souvent considéré
comme le « père » de l’informatique. Il est décerné chaque année depuis 1966 à un informaticien ayant effectué une
contribution exceptionnelle à l’informatique. Cinq canadiens se sont mérités ce prix. Stephen Arthur Cook (né aux
États-Unis), professeur à l’Université de Toronto, le reçu en 1982 pour ses travaux en théorie de la complexité des
algorithmes. William Morton Kahan le reçu en 1986 pour ses travaux en analyse numérique. Yoshua Bengio (né en
France), de l’Université de Montréal, et Geoffrey Hinton (né en Angleterre), de l’Université de Toronto, le reçurent en
2018 pour leurs contributions au développement des réseaux de neurones profonds (conjointement avec Yann LeCun
de l’Université de New-York). Alfred Vaino Aho (né au Canada), professeur à l’Université Columbia aux USA, le
reçu en 2020 pour ses travaux en compilation, algorithmes et structures de données. Google offre maintenant un prix
de 1 000 000 $ au récipiendaire du prix Alan Turing.
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formules. Un ensemble de formules logiques peut être analysé pour déterminer sa cohérence, c’est-
à-dire l’absence de contradiction entre les formules. Les règles utilisées pour faire de la déduction
peuvent aussi être analysées pour déterminer leur cohérence, c’est-à-dire l’impossibilité de déduire
une formule fausse à partir de formules considérées comme vraies. Une preuve, au sens de la
logique formelle, est une suite de déductions. Les déductions sont effectuées en appliquant des
règles d’inférence.

Les formules de logique sont énoncées à l’aide d’une syntaxe formelle (c’est-à-dire précise et sans
ambiguïté). Plusieurs types de logiques ont été proposées. La logique propositionnelle constitue
la base de tous les types de logique. Une formule est une représentation formelle d’un fait, d’une
connaissance à propos d’un concept d’intérêt pour l’humain. La première compétence que vous
devrez acquérir sera de représenter des faits, des connaissances, sous forme de formules logiques. La
deuxième sera de raisonner sur ces formules. Le verbe « représenter » a une importance capitale:
une formule n’est rien d’autre qu’une suite de symboles. Il faut aussi associer ces symboles à des
objets, des concepts, des faits du « monde » représenté par la formule. Le « monde » dénote ce dont
la formule traite, sur quoi porte la formule. On appelle interprétation le lien entre les symboles d’une
formule et les objets du monde qu’ils représentent La beauté de la logique est que le raisonnement
et les calculs effectués sont indépendants du « monde » en question.

La logique est utilisée dans tous les domaines de l’informatique. Tous les langages de program-
mation utilisent les connecteurs (c’est-à-dire les opérateurs) de la logique propositionnelle. Les
méthodes les plus avancées pour déterminer la correction d’un logiciel (c’est-à-dire vérifier qu’un
logiciel fait bien ce qu’il est supposé faire, vérifier qu’un logiciel est correct, vérifier qu’un logiciel
ne contient pas de faute (bug)) sont fondées sur la logique. Les logiciels contrôlent maintenant une
foule d’objets comme des trains, des avions, des autos, des centrales nucléaires, des stimulateurs
cardiaques, des appareils de radiologie. Une erreur dans ces logiciels peut entraîner des conséquences
dramatiques pour les humains et l’environnement. L’étude de leur correction est primordiale. Cela
ne serait possible sans la logique. Les opérations les plus élémentaires d’un ordinateur (opéra-
tions arithmétiques) sont exprimées en logique propositionnelle. Le fonctionnement de base d’un
ordinateur est fondé sur l’algèbre de Boole, qui est essentiellement la même chose que la logique
propositionnelle. Une algèbre permet de faire des calculs, c’est-à-dire appliquer des opérateurs à
des opérandes. La logique permet aussi de faire des calculs, comme déterminer si une formule est
vrai ou fausse pour une interprétation donnée, mais aussi de déduire de nouvelles formules.

Un des objectifs de ce cours est aussi de vous apprendre à développer une familiarité avec la
notation mathématique. L’enseignement des mathématiques au niveau du primaire, du secondaire
et du collégial a souvent tendance à vouloir beaucoup schématiser les concepts mathématiques, ce
qui est utile pour favoriser la compréhension. Toutefois, un schéma demeure une approximation
du concept mathématique; il ne permet pas de toujours bien saisir toutes les nuances, et il porte
parfois (trop souvent!) à confusion, car la même image peut signifier des choses différentes pour deux
personnes. On dit qu’une image vaut mille mots, mais une définition mathématique vaut une infinité
de mots. Apprendre les mathématiques par l’image et les schémas, c’est un peu comme apprendre
la musique à l’oreille: c’est bien, mais ça demeure limité. Il faut être capable de lire une partition
pour devenir un bon musicien et jouer n’importe quelle pièce, et communiquer n’importe quelle
pièce. Un schéma permet de développer l’intuition; il est un outil très important dans le travail
des mathématiciens. Mais on ne définit pas un concept de manière précise avec un schéma; on fait
simplement l’illustrer. Il faut utiliser des formules pour être précis. En spécification de système,
ce sera la même chose; un modèle graphique d’un système, c’est bien, mais c’est insuffisant. Une
formule mathématique permet de décrire exactement ce que l’on veut, sans ambiguïté.

Dans les cycles pré-universitaires, on enseigne souvent les mathématiques comme l’application
d’une « recette » . On apprend par coeur la recette, on découvre les cas où elle s’applique, et on
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l’applique sans réfléchir beaucoup à la recette elle-même (d’où vient-elle, pourquoi elle marche, y
a-t-il une meilleure recette, etc). Dans un cours de logique, on vise, avant tout, à développer votre
capacité à réfléchir. Il n’y a pas de recette pour trouver une preuve ou pour créer un modèle d’un
problème. En tant qu’informaticien, vous devrez développer des recettes. L’essentiel des tâches d’un
informaticien peut se résumer ainsi : analyser, spécifier, concevoir, implémenter, valider et vérifier.
Toutes ces tâches demandent de réfléchir, de raisonner, de créer et de tester. Cela demande de la
créativité; il ne s’agit pas simplement d’appliquer des recettes.

1.1 Logique propositionnelle

1.1.1 Syntaxe

Une formule de la logique propositionnelle est construite à l’aide de connecteurs logiques, de variables
propositionnelles et des constantes vrai (parfois représentée par « 1 » ou «⊤ » ) et faux (parfois
représentée par « 0 » ou «⊥ » ). Les connecteurs logiques usuels sont les suivants:

• ¬ : la négation,

• ∧ : la conjonction, aussi appelé le « et » logique,

• ∨ : la disjonction, aussi appelé le « ou » logique,

• ⊕ : la disjonction exclusive, aussi appelé le « ou exlusif » ,

• ⇒ : l’implication, aussi noté «→ » dans certains textes et logiciels,

• ⇐ : l’implication inverse, aussi noté «← » dans certains textes et logiciels,

• ⇔ : l’équivalence, aussi noté «↔ » dans certains textes et logiciels.

Une variable propositionnelle peut prendre la valeur vrai ou la valeur faux. Dans les exemples et
définitions, nous utiliserons, par convention, X pour dénoter une variable propositionnelle (possi-
blement indexée par un nombre, comme X0, X1, . . ., si plusieurs variables sont nécessaires). Nous
utiliserons A,B, C, . . . pour désigner une formule propositionnelle.

Définition 1 Une formule propositionnelle est une suite de symboles construite seulement à partir
des règles suivantes:

1. vrai et faux sont des formules propositionnelles;

2. si X est une variable propositionnelle, alors X est une formule propositionnelle;

3. si A est une formule propositionnelle, alors ¬A est une formule propositionnelle;

4. si A et B sont des formules propositionnelles, alors

• A ∧ B
• A ∨ B
• A⊕ B
• A ⇒ B
• A ⇐ B
• A ⇔ B
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sont des formules propositionnelles;

5. si A est une formule propositionnelle, alors (A) est une formule propositionnelle.

□

Les parenthèses servent à définir un ordre dans l’évaluation des connecteurs logiques, exactement
comme dans les expressions arithmétiques.

Remarque 1 Dans le cadre du cours, par souci de lisibilité, les connecteurs sont parenthésés selon
les priorités suivantes, de la plus forte à la plus faible; les opérateurs sur une même ligne ont la
même priorité:

1. ¬,

2. ∧,

3. ∨, ⊕

4. ⇒, ⇐

5. ⇔.

Attention : Il n’existe pas de convention universelle pour la priorité en logique. Elle peut varier
d’un livre à l’autre et d’un outil à l’autre. Il vous incombe de prendre connaissance de la priorité
utilisée selon le livre ou l’outil.

En arithmétique, il est usuel de considérer que la multiplication a préséance sur l’addition, ce qui
fait que lorsqu’on écrit a+ b ∗ c, on veut dire a+ (b ∗ c). De la même manière, si on écrit

A ∧ B ∨ C

cela signifie, à cause de la préséance de ∧ sur ∨,

(A ∧ B) ∨ C

Les parenthèses peuvent aussi être omise pour les opérateurs associatifs. Par exemple, l’expression
a+b+c peut aussi être écrite (a+b)+c, ou bien a+(b+c); cela n’a pas d’importance, car l’addition
est associative; on omet généralement les parenthèses dans ce cas. On procède de manière similaire
en logique avec les connecteurs associatifs de la logique, qui sont les suivants:

1. ∧,

2. ∨

3. ⊕

4. ⇔.

On remarque que seule l’implication n’est pas associative. Il est donc ambigu d’écrire

A⇒B⇒ C

Cela peut être interprété comme (A ⇒ B) ⇒ C, ou bien comme A ⇒ (B ⇒ C), qui ne sont pas
équivalentes. Pour choisir entre les deux, il faudrait définir si on associe d’abord à gauche, ou bien
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(
... A
⇒
... (
...

... B
... ∨
...

... (
...

...
... (¬C)

...
... ∧

...
...

... D
...

... )
... )
)

⇔
(E ⇒F)

Figure 1.1: Représentation indentée de la formule (1.1)

à droite; en général, on évite ce type de règle de priorité sur les associations, car elles ne sont pas
très intuitives.

Pour illustrer la priorité des connecteurs, considérez la formule suivante, qui ne contient aucune
parenthèse:

A⇒B ∨ ¬C ∧ D⇔ E ⇒F (1.1)

Elle est équivalente, après introduction des parenthèses qui représentent la priorité des opérateurs,
à la formule suivante (

A⇒
(
B ∨

(
(¬C) ∧ D

)))
⇔ (E ⇒F)

Le connecteur ⇔ de cette formule est le moins prioritaire; il s’applique donc en dernier, et nous
avons entouré les deux formules à gauche et à droite avec les parenthèses les plus externes. À
gauche de ⇔, le connecteur le moins prioritaire est ⇒; nous avons entouré son opérande à droite
de parenthèses, et ainsi de suite, en procédant toujours du moins prioritaire au plus prioritaire.

L’élimination des parenthèses en utilisant la priorité des opérateurs vise à simplifier la lecture
des formules. Par exemple, en arithmétique, on écrit a+b∗c au lieu de a+(b∗c), parce que c’est plus
simple à lire. Toutefois, comme on peut le voir avec la formule (1.1), l’élimination des parenthèses
rend parfois une formule complexe plus difficile à lire. Il s’agit d’utiliser son jugement pour choisir
l’une ou l’autre des représentations. Parfois, nous écrirons des formules assez longues, et nous les
écrirons sur plusieurs lignes, avec une indentation, un peu comme dans un programme, afin d’en
faciliter la lecture. Ainsi, la formule (1.1) peut s’écrire sur plusieurs lignes avec indentation, tel
qu’illustré dans la figure 1.1. Les opérandes d’un connecteur logique sont indentées à droite et les
parenthèses correspondantes sont alignées sur la même colonne, tel qu’illustré par les décorations

«
... » que nous avons ajoutées à titre illustratif. On peut voir plus facilement que le connecteur

principal de cette formule est une équivalence, qui s’applique à une implication à gauche, et une
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A
⇒

B
∨

¬C
∧
D

⇔
E ⇒F

Figure 1.2: Représentation indentée, sans parenthèse, de la formule (1.1)

implication à droite, et ainsi de suite. On peut aussi omettre les parenthèses, ce qui donne une
formule plus simple à lire, tel qu’illustré dans la figure 1.2; les parenthèses ne sont pas nécessaires,
à cause de la priorité des opérateurs. Notons que certains langages de programmation comme
Python utilisent l’indentation au lieu de parenthèse; dans ce cas, l’indentation définit la priorité.
Ce n’est pas le cas en logique dans la plupart des outils : l’indentation ne définit pas la priorité des
opérateurs; elle est utilisée à titre informatif.

1.1.2 Tables de vérité des connecteurs logiques

La valeur de vérité d’une formule, qui est soit vrai, soit faux, peut-être calculée à l’aide des tables
de vérité suivantes. Elles se lisent de la même manière que les tables de calculs des opérateurs
arithmétiques que l’on vous a enseignées dès l’école primaire, comme pour les additions et les
multiplications. Par soucis de concision, on utilise 0 et 1 pour les valeurs faux et vrai, respectivement.
Les lignes indiquent les valeurs de l’opérande de gauche, alors que les colonnes indiquent les valeurs
de l’opérande de droite (cela a une importance pour les connecteurs ⇒ et ⇐, qui ne sont pas
commutatifs, alors que les autres opérateurs le sont).

¬ 0 1
1 0

∧ 0 1
0 0 0
1 0 1

∨ 0 1
0 0 1
1 1 1

⇒ 0 1
0 1 1
1 0 1

⇐ 0 1
0 1 0
1 1 1

⇔ 0 1
0 1 0
1 0 1

⊕ 0 1
0 0 1
1 1 0

Voici une représentation équivalente et plus compacte des tables de vérité des opérateurs binaires.

X1 X2 ∧ ∨ ⇒ ⇐ ⇔ ⊕
0 0 0 0 1 1 1 0
0 1 0 1 1 0 0 1
1 0 0 1 0 1 0 1
1 1 1 1 1 1 1 0

La valeur de vérité d’une formule propositionnelle peut être calculée si la valeur de chaque variable
propositionnelle qu’elle contient est connue. Nous noterons X := 0 le fait que la valeur de la variable
X est 0. Notons que X := 0 n’est pas une formule propositionnelle, car le symbole « := » ne fait pas
partie de la syntaxe de la logique propositionnelle. La valeur de la formule X1∨(X2∧X3) est 0 pour
X1 := 0, X2 := 1, X3 := 0. On peut aussi calculer la valeur d’une formule propositionnelle pour
toutes les combinaisons des valeurs de ses variables. Voici le calcul pour la formule X1 ∨ (X2 ∧X3).
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Cela est plutôt fastidieux, car le nombre de combinaisons est égal à 2n pour une formule contenant
n variables propositionnelles.

no X1 X2 X3 X2 ∧X3 X1 ∨ (X2 ∧X3)

1 0 0 0 0 0
2 0 0 1 0 0
3 0 1 0 0 0
4 0 1 1 1 1
5 1 0 0 0 1
6 1 0 1 0 1
7 1 1 0 0 1
8 1 1 1 1 1

Le problème de la satisfaction d’une formule propositionnelle est un problème classique en algorith-
mique. Il s’agit de trouver une combinaison de valeur des variables d’une formule de sorte que la
formule est vrai. Dans l’exemple précédent, les lignes 4 à 8 sont des solutions pour la satisfaction
de la formule X1 ∨ (X2 ∧ X3). Ce problème de la satisfaction d’une formule propositionnelle est
très important pour les outils de vérification automatique des logiciels (appelés en anglais model
checking tools) et la preuve automatique de théorèmes. C’est un problème dit NP-complet (ce qui
veut dire, pour simplifier, que le meilleur algorithme connu actuellement exige un temps de cal-
cul qui augmente de manière exponentielle en fonction de la taille de la formule, qu’une solution
peut-être vérifiée en temps polynomial, et que si un jour on trouve un algorithme polynomial pour
calculer une solution, cet algorithme pourra aussi résoudre tous les autres problèmes NP-complet).
Ce théorème de Stephen A. Cook, considéré comme un théorème fondamental en théorie de la
complexité, lui mérita (avec d’autres contributions) le prix Alan Turing en 1982. Il existe une
compétition annuelle en informatique pour déterminer les meilleurs algorithmes de satisfaction de
formules propositionnelles.

1.1.3 Expression de faits en logique propositionnelle

La logique a été inventée pour exprimer des faits, des connaissances avec plus de précision que le
langage naturel (par exemple, le français, l’anglais, etc). L’humain utilise le langage naturel pour
communiquer, mais le langage naturel comporte souvent des ambiguïtés, c’est-à-dire qu’il permet
des interprétations différentes d’un ensemble d’énoncés, en fonction de la personne qui les considère.
La logique permet d’éviter toute ambiguïté et de raisonner de manière rigoureuse. Il est difficile,
voire impossible, de proposer une traduction systématique d’un langage naturel vers des formules
de logique, à cause du trop grand nombre de façons d’exprimer des faits en langage naturel et de
l’ambiguïté omniprésente dans le langage naturel. On peut toutefois identifier quelques correspon-
dances classiques. Nous vous présenterons un résumé très simple de quelques correspondances en
logique d’énoncés en langage naturel. Nous utilisons la police suivante pour identifier les variables
propositionnelles: variablePropositionnelle. Par exemple, supposons qu’on s’intéresse au fait qu’une
personne ait la grippe. On peut utiliser la variable aLaGrippe; si cette variable vaut faux, alors
la personne n’a pas la grippe; si cette variable vaut vrai, alors on considère que la personne a la
grippe. Puisqu’une variable propositionnelle est aussi une formule propositionnelle, alors énoncer le
fait (c’est-à-dire la formule)

aLaGrippe (1.2)

signifie que la personne a la grippe. Énoncer le fait

¬aLaGrippe (1.3)
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signifie que la personne n’a pas la grippe. Dans un langage de programmation comme le C ou le
Java, on aurait plutôt écrit « aLaGrippe == 1 » et « aLaGrippe == 0 » . On voit que la logique
propositionnelle a une notation distincte de la programmation. Bien sûr, on pourrait aussi écrire en
logique propositionnelle quelque chose qui ressemble à la programmation, en utilisant l’équivalence,
qui est analogue à l’égalité:

aLaGrippe⇔ vrai (1.4)

et
aLaGrippe⇔ faux (1.5)

(1.2) est équivalent à (1.4), et (1.3) est équivalent à (1.5), mais elles sont plus compliquées que
nécessaire. Les sous-section suivantes présentent brièvement quelques traductions pour chaque con-
necteur.

1.1.3.1 Négation (¬)

C’est la négation au sens usuel en langage naturel. La formule (1.3) est un exemple de négation.

1.1.3.2 Conjonction (∧)

La conjonction est généralement, mais pas toujours, équivalente au « et » du langage naturel. La
phrase suivante

“L’étudiant a réussi les cours IFT001 et IFT002.” (1.6)

se traduit comme suit:
IFT001Réussi ∧ IFT002Réussi

Toutefois, la phrase

“Dans la table d’hôte, vous avez le choix entre la soupe et le dessert.” (1.7)

ne signifie pas que la soupe et le dessert sont inclus dans le forfait de la table d’hôte. Il s’agit de
l’un ou l’autre. Cela serait plutôt représenté par un « ou exclusif » ⊕.

soupe⊕ dessert

1.1.3.3 Disjonction (∨)

La disjonction est généralement, mais pas toujours, équivalente au « ou » du langage naturel. La
phrase suivante illustre un cas classique de disjonction, au sens où les deux options peuvent être
vraies en même temps.

“Pour s’inscrire au cours IFT003, il faut avoir réussi IFT001 ou IFT002.” (1.8)

La partie « il faut avoir réussi . . . » se traduit par une disjonction.

IFT001Réussi ∨ IFT002Réussi

Une personne qui a réussi IFT001 seulement, IFT002 seulement, ou bien les deux, peut s’inscrire à
IFT003.

La phrase suivante, qui est presque identique à la phrase (1.7), mais avec un « ou » au lieu d’un
« et » , sera aussi traduite avec un « ou exclusif » .

“Dans la table d’hôte, vous avez le choix entre la soupe ou le dessert.” (1.9)

On constate que les ambiguïtés surgissent très rapidement en langage naturel.
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1.1.3.4 Implication (⇒)

L’implication correspond typiquement à la forme « si . . . alors . . . » , mais elle est aussi représentée
sous une multitude d’autres formes. Par exemple,

“Une personne qui a la grippe fait de la fièvre.” (1.10)

Cette phrase est traduite comme suit:

aLaGrippe⇒ faitDeLaFièvre

Le connecteur⇒ est souvent décrit en terme de condition nécessaire ou condition suffisante. Ainsi,
dans une formule de la forme A ⇒ B, on dit que B est une condition nécessaire pour A, et, de
manière duale, que A est une condition suffisante pour B. Par exemple, on dit que faitDeLaFièvre
est une condition nécessaire pour aLaGrippe; faire de la fièvre n’est pas suffisant pour diagnostiquer
une grippe; on peut faire de la fièvre pour plusieurs autres raisons (par exemple, pour une infection
bactérienne, alors que la grippe est une infection virale, ou à la suite d’une insolation). De manière
duale, on dit que que aLaGrippe est une condition suffisante pour faitDeLaFièvre, parce que on est
sûr qu’une personne ayant la grippe fait de la fièvre.

Les mathématiciens utilisent aussi la formulation « seulement si » pour représenter les conditions
nécessaires et suffisantes. La phrase « A seulement si B » indique que B est une condition nécessaire
pour A et, de manière duale, que A est une condition suffisante pour B. Par exemple, la phrase
suivante est équivalente à la phrase (1.10).

“Une personne a la grippe seulement si elle fait de la fièvre.” (1.11)

La phrase (1.8) se traduit en entier par une implication.

IFT001Réussi ∨ IFT002Réussi⇒ PeutSinscrireIFT003

Grâce aux tautologies présentées dans la prochaine section (Section 1.3.1), cette phrase peut aussi
s’écrire, de manière équivalente, comme suit:

(IFT001Réussi⇒ PeutSinscrireIFT003) ∧ (IFT002Réussi⇒ PeutSinscrireIFT003)

On dit que IFT001Réussi est une condition suffisante pour PeutSinscrireIFT003 (c’est-à-dire, que
réussir IFT001 est une condition suffisante pour s’inscrire à IFT003). IFT002Réussi est aussi une
condition suffisante pour PeutSinscrireIFT003. On remarque que réussir un des cours IFT001 et
IFT002 est suffisant pour s’inscrire à IFT003. On remarque que le dual, « PeutSinscrireIFT003 est
une condition nécessaire pour IFT001Réussi » , semble un peu bizarre. Cela est techniquement
correct d’un point de vue mathématique, mais pas usuel dans le langage courant, car cela porterait
à confusion; personne ne dira que « pouvoir s’inscrire à un cours » est une condition nécessaire pour
la réussite d’un cours préalable! La formule suivante, qui n’a pas le même sens, permet de mieux
visualiser la distinction entre condition nécessaire et suffisante pour ce contexte.

IFT003Réussi⇒ (IFT001Réussi ∨ IFT002Réussi)

On voit que « réussir IFT001 ou réussir IFT002 » est une condition nécessaire pour réussir IFT003.
La formule suivante permet aussi de voir la distinction entre une conjonction et une disjonction.

IFT001Réussi ∧ IFT002Réussi⇒ PeutSinscrireIFT003 (1.12)
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Cette formule indique que si on a réussi les deux cours IFT001 et IFT002, on peut s’inscrire à
IFT003.

On pourrait se poser la question suivante: y a-t-il d’autres conditions qui permettent de s’inscrire
à IFT003? Une formule contenant une implication ne nous le dit pas. La formule peut être vraie,
avec PeutSinscrireIFT003 vraie et IFT001Réussi et IFT002Réussi fausse, comme le montre la table
de vérité suivante, où X1, X2 et X3 représentent respectivement IFT001Réussi, IFT002Réussi et
PeutSinscrireIFT003.

no X1 X2 X3 X1 ∧X2 (X1 ∧X2)⇒ X3

1 0 0 0 0 1
2 0 0 1 0 1
3 0 1 0 0 1
4 0 1 1 0 1
5 1 0 0 0 1
6 1 0 1 0 1
7 1 1 0 1 0
8 1 1 1 1 1

On remarque que la formule (1.12) est vraie dans tous les cas, sauf pour la ligne 7, où IFT001Réussi
et IFT002Réussi sont vraies, et PeutSinscrireIFT003 est fausse. Donc, si l’université affirme que la
formule (1.12) est vraie, alors on est dans les cas 1 à 6 et 8. Si un étudiant a réussi IFT001 et
IFT002, alors l’université doit lui permettre de s’inscrire à IFT003, si elle veut respecter sa formule,
car sinon la formule est fausse. On remarque aussi que cette formule indique aussi que l’université
peut permettre à l’étudiant de s’inscrire à IFT003 même s’il n’a pas réussi IFT001 ou IFT002; ce
cas est représenté par les lignes 1 à 6. Si on veut exclure la possibilité d’inscrire un étudiant à
IFT003 sans avoir réussi IFT001 et IFT002, alors on utilisera plutôt une équivalence, au lieu d’une
implication.

1.1.3.5 Équivalence (⇔)

L’équivalence correspond typiquement à la forme « . . . si, et seulement si, . . . » , que l’on représente
souvent par l’abréviation ssi dans les textes mathématiques. Par exemple, la phrase

“On est admis au bac en informatique ssi on a réussi les cours collégiaux
suivants: MAT103, MAT105 et MAT203.” (1.13)

admisBacInfo⇔ (MAT103Réussi ∧MAT105Réussi ∧MAT203Réussi) (1.14)

Pour une formule de la forme A ⇔ B, on dit que A est une condition nécessaire et suffisante pour
B, et vice-versa, car l’équivalence est commutative (donc, B est aussi une condition nécessaire et
suffisante pour A). Dans l’exemple (1.14), on dit que

MAT103Réussi ∧MAT105Réussi ∧MAT203Réussi

est une condition nécessaire et suffisante pour être admis au baccalauréat en informatique.
Si on veut indiquer que la seule façon de s’inscrire à IFT003 est d’avoir réussi IFT001 et IFT002,

on écrit alors:
(IFT001Réussi ∧ IFT002Réussi)⇔ PeutSinscrireIFT003

La phrase suivante est aussi un exemple d’équivalence, mais sans utiliser la forme « si et seule-
ment si » . Il s’agit d’une définition d’un terme; les définitions sont typiquement représentées par
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une équivalence.

“Les mammifères sont caractérisés essentiellement par l’allaitement des
jeunes, un cœur à quatre cavités, un système nerveux et encéphalique
développé, une homéothermie et une respiration pulmonaire.”

(1.15)

se traduit comme suit:

mammifère⇔ allaitement ∧ cœurÀ4Cavités ∧
systèmeNerveuxEncéphaliqueDéveloppé ∧ homéothermie ∧
respirationPulmonaire

1.2 Logique du premier ordre

La logique du premier ordre est plus riche que la logique propositionnelle. Elle permet d’utiliser des
variables d’autres types que les variables booléennes, comme par exemple les naturels, les entiers,
les ensembles, les relations, les fonctions, . . . . Elle permet aussi d’utiliser des fonctions booléennes,
que l’on appelle des prédicats.

1.2.1 Syntaxe

Les formules de la logique du premier ordre sont construites en appliquant des prédicats à des
termes pour obtenir des formules atomiques, et en combinant des formules atomiques à l’aide de
connecteurs logiques et de quantificateurs.

Définition 2 Un terme est une suite de symboles construite à partir des règles suivantes:

1. si x est une variable, alors x est un terme;

2. si c est une constante, alors c est un terme;

3. si f est un symbole de fonction d’arité (i.e., nb de paramètres) n > 0 et que t1, . . . , tn sont
des termes, alors f(t1, . . . , tn) est un terme.

□

Un terme est une expression qui représente un objet du monde que l’on veut décrire. En
arithmétique, les expressions suivantes sont des exemples de terme :

0 0 + x 1 + (2 ∗ x)− y

log(x+ 4)
√
x+ y ∗ 2 sinx2

Dans la définition de la syntaxe des termes, f représente un opérateur comme +,−, ∗,√, log, sin, . . .;
pour simplifier la défintion de la syntaxe, on utilise la forme générale f(t1, . . . , tn), alors que la
syntaxe usuelle est souvent en format infixe, comme x+ y, au lieu de +(x, y).

Remarque 2 Par souci de généralité, certains auteurs classifient les constantes comme des sym-
boles de fonction d’arité 0, c’est-à-dire qu’une constante est une fonction qui ne prend pas de
paramètre et qui retourne toujours la même valeur.
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Définition 3 Une formule atomique est une suite de symboles construite à partir des règles suiv-
antes:

1. vrai et faux sont des formules atomiques;

2. si r est un prédicat (i.e., une fonction booléenne) d’arité n > 0 et que t1, . . . , tn sont des
termes, alors r(t1, . . . , tn) est une formule atomique.

□

Un prédicat est une fonction qui retourne vrai ou faux. En arithmétique, les opérateurs suivants
sont des exemples de prédicats :

= < > ≥ ≤

Les expressions suivantes sont des formules atomiques en arithmétique.

0 = 0 1 + x > x log(x+ 1) ≤ x+ 1

Définition 4 Une formule est une suite de symboles construite à partir des règles suivantes:

1. une formule atomique est une formule;

2. si A est une formule, alors ¬A est une formule.

3. si A et B sont des formules, alors

• A ∧ B
• A ∨ B
• A⊕ B
• A ⇒ B
• A ⇐ B
• A ⇔ B

sont des formules;

4. si A est une formule, alors (A) est une formule

5. si x est une variable et A est une formule, alors

• ∀x · A
• ∃x · A

sont des formules.

□

Les symboles ∃,∀ sont appelés des quantificateurs (existentiel pour ∃ et universel pour ∀).
Une variable en logique du premier ordre représente un objet du monde que l’on désire décrire.
Dans le langage du logiciel TarskiUdeS, une variable désigne un objet (c’est-à-dire un cube, un
tétraèdre ou un dodécaèdre). En arithmétique, une variable désigne un nombre. La variable en
logique du premier ordre joue donc un rôle différent de la variable en logique propositionnelle, qui
peut seulement désigner une valeur de vérité (vrai et faux). Nous utilisons le symbole «≡ » pour
indiquer une équivalence syntaxique, c’est-à-dire que e1 ≡ e2 signifie que e1 est une abréviation
pour e2. Il s’agit d’une forme d’égalité.
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Remarque 3 Soit T un ensemble. Certains auteurs utilisent les abréviations suivantes:

∃x : T · A ≡ ∃x · x ∈ T ∧ A
∃x : T | A · B ≡ ∃x · x ∈ T ∧ A ∧ B
∀x : T · A ≡ ∀x · x ∈ T ⇒ A
∀x : T | A · B ≡ ∀x · x ∈ T ∧ A ⇒ B
∀x, y · A ≡ ∀x · ∀y · A
∀x, y : T · A ≡ ∀x · ∀y · x ∈ T ∧ y ∈ T ⇒ A
∃x, y · A ≡ ∃x · ∀y · A
∃x, y : T · A ≡ ∃x · ∀y · x ∈ T ∧ y ∈ T ⇒ A

Remarque 4 Dans ces notes de cours, les quantificateurs ∀,∃ ont la même priorité, et leur priorité
est plus faible que les connecteurs logiques, ce qui donne les priorités suivantes, 1 étant la plus forte
priorité, et les opérateurs sur une même ligne ayant la même priorité:

1. ¬,

2. ∧,

3. ∨, ⊕

4. ⇒, ⇐

5. ⇔

6. ∀, ∃

Par exemple, la formule suivante

∀x · A⇒ ∃y · A ∧ ¬B ∨ C

est équivalente, après introduction des parenthèses qui représentent la priorité des opérateurs, à la
formule suivante :

∀x ·
(
A⇒ ∃y ·

(
(A ∧ ¬B) ∨ C

))
Définition 5 Dans les formules ∀x · A et ∃x · A, les occurrences de x dans A sont dites liées
aux quantificateurs ∀x et ∃x, respectivement. Si une occurrence est sous la portée de plusieurs
quantificateurs, elle est alors liée au quantificateur le plus près (i.e., le plus imbriqué). □

Définition 6 Dans une formule A, une occurrences de x est dite libre si elle n’est pas liée à un
quantificateur. □

Définition 7 Une formule est dites fermée ssi elle ne contient aucune variable libre. □

Dans la formule suivante, la variable x est liée et la variable y est libre. Cette formule n’est pas
fermée, à cause de y.

∀x · x > 0 ∧ y = 1

Dans la formule suivante, la première occurrence de la variable x est liée (i.e., x > 0), mais la
deuxième est libre (i.e., x = 1), car elle est hors de la portée du quantificateur ∀. Donc, la variable
x est à la fois libre et liée dans cette formule. Cette formule n’est pas fermée, à cause de l’occurence
libre de x.

(∀x · x > 0) ∧ x = 1
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Les deux occurrences de x ne désignent donc pas la même chose.
Dans l’exemple suivant, les variables x et y sont liées de plusieurs manières, indiquées par un

indice en rouge. Cette formule est fermée, car toutes les variables sont liées.

∀x
1
, y
1
· pere(x

1
, y
1
)⇒

(
parent(x

1
, y
1
) ∧
(
∀x
2
, y
2
·mere(x

2
, y
2
)⇒ parent(x

2
, y
2
)
)
∧ homme(x

1
)
)

(1.16)

On peut considérer les occurrences de x identifiées par x
1

comme distinctes de celles identifiées par
x
2
. On verra, avec les lois de la logique et de la substitution, qu’il est plus clair d’utiliser la formule

équivalente suivante, où les occurrences de x
1

sont regroupées(
∀x
1
, y
1
· pere(x

1
, y
1
)⇒

(
parent(x

1
, y
1
) ∧ homme(x

1
)
))
∧
(
∀x
2
, y
2
·mere(x

2
, y
2
)⇒ parent(x

2
, y
2
)
)

(1.17)

Il est très fréquent d’utiliser la même variable plusieurs fois avec des quantificateurs différents. En
pratique, chaque quantificateur définit une « nouvelle » variable.

La notion de variable libre et liée est très importante. Quand une formule contient une variable
libre, il n’est pas possible d’évaleur la valeur de vérité de cette formule. Nous verrons plus loin dans
ce chapitre que le logiciel TarskiUdeS ne peut évaluer une formule si elle contient une variable libre.

Définition 8 L’expression A[x := t], appelée la substitution de x par t dans A, où A est une
formule, x est une variable et t est un terme, dénote la substitution de toutes les occurrences libres
de x dans A par t. Le terme t peut contenir la variable x. La substitution est dite valide si t ne
contient pas de variables qui deviennent liées dans le résultat de la substitution.

Si une substitution est invalide, on peut toujours renommer dans A les variables des quantifi-
cateurs en choisissant une variable qui n’apparaît pas dans A. On peut renommer une variable
quantifiée en utilisant la substitution. Soit x′ une variable n’apparaissant pas dans la formule A.
Alors, la formule ∀x · A est équivalente à la formule ∀x′ · (A[x := x′]), et la formule ∃x · A est
équivalente à la formule ∃x′ · (A[x := x′]). □

La substitution a une priorité plus forte que tous les connecteurs logiques. Voici le problème
engendré par une application incorrecte d’une substitution2. La formule suivante est valide :

n ∈ N ⇒ ¬∀m · (m ∈ N ⇒ m = n )

On peut lui appliquer une substitution pour l’utiliser pour n := m

(n ∈ N ⇒ ¬∀m · (m ∈ N ⇒ m = n ) )[n := m]

Ce qui donne comme résultat

m ∈ N ⇒ ¬∀m · (m ∈ N ⇒ m = m )

ce qui cause un problème : l’occurrence libre de n devient liée et la formule résultante est fausse.
Pour rendre la substitution valide, on peut remplacer ∀m par ∀z

(n ∈ N ⇒ ¬∀z · (m ∈ N ⇒ m = n )[m := z] )[n := m]
≡

(n ∈ N ⇒ ¬∀z · ( z ∈ N ⇒ z = n ) )[n := m]
≡

m ∈ N ⇒ ¬∀z · ( z ∈ N ⇒ z = m )

Remarque 5 Certains auteurs utilisent les notations alternatives suivantes pour la substitution :
A[x\t], et A[t/x].

2Source: Jean-Raymond Abrial, présentation du langage B
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1.2.2 Interprétation des quantificateurs

Une formule de la forme « ∀x·A » signifie que la formule A est vraie pour toutes les valeurs possibles
de x, c’est-à-dire tous les objets du monde. Supposons que les objets du monde sont représentés
par l’ensemble {o1, . . . , on}. La valeur de vérité de ∀x · A est donné par la formule suivante:

(∀x · A) ⇔ (A[x := o1] ∧ . . . ∧ A[x := on])

Il peut y avoir une infinité d’objets dans un monde, comme par exemple en arithmétique. L’ensemble
des nombres naturels N = {0, 1, 2, . . .} peut être utilisé dans des formules quantifiées, et on obtient
alors une conjonction infinie, d’où l’intérêt d’utiliser le symbole ∀ pour désigner une conjonction
infinie.

(∀x · x+ 0 = x) ⇔ ((x+ 0 = x)[x := 0] ∧ (x+ 0 = x)[x := 1] ∧ (x+ 0 = x)[x := 2] ∧ . . .)

En mathématiques, il arrive souvent que l’on donne une formule sans utiliser de quantification.
Par exemple, la loi suivante de l’arithmétique

x+ 0 = x (1.18)

ne contient aucun quantificateur, mais, par convention, on sait que cela s’applique à tout nombre
x, donc que la formule réelle est plutôt ∀x · x+ 0 = x. La convention usuelle en mathématiques est
que les variables libres d’une formule sont implicitement quantifiées universellement.

Supposons que l’on vous donne deux formules :

x+ y = 4 (1.19)
x = y (1.20)

Il y a maintenant une ambiguité ici : on ne sait pas si les variables x et y des formules (1.19)
et (1.20) denotent le même nombre dans chaque formule, i.e., si la valeur de x dans la première
formule doit être la même que celle de la deuxième formule. Autrement dit, est-ce que x dénote le
même nombre dans les deux formules. Si on prend en compte la convention précédente, qui indique
qu’une variable sans quantificateur est implicitement quantifiée universellement, alors on obtient les
formules suivantes :

∀x · ∀y · x+ y = 4 (1.21)
∀x · ∀y · x = y (1.22)

Les formules (1.21) et (1.22) sont fausses en arithmétique (i.e., la somme de deux nombres quel-
conques ne donne pas 4, et deux nombres ne sont pas toujours égaux). Les formules (1.19) et
(1.20) peuvent être satisfaites pour x := 2 et y := 2. Donc, quand on donne des formules, il faut
bien expliciter le contexte de travail. Dans la formule (1.18), on donne une loi de l’arithmétique,
et, implicitement, la variable x est quantifiée universellement. Les formules (1.19) et 1.20 seraient
plutôt utilisée dans un contexte où on cherche les valeurs de x et y qui satisfont les deux formules
en même temps. Lorsqu’on effectue des preuves, on doit gérer les quantificateurs avec beaucoup
de rigueur. Si une variable est libre dans plusieurs hypothèses d’une preuve, c’est qu’il s’agit de la
même variable et qu’elle désigne le même objet.

Une formule de la forme « ∃x · A » signifie que la formule A est vrai pour au moins une valeur
de x, donc au moins un objet du monde. La valeur de vérité de ∃x · A est donné par la formule
suivante:

(∃x · A) ⇔ (A[x := o1] ∨ . . . ∨ A[x := on])

Nous allons illustrer les quantificateurs en utilisant le logiciel TarskiUdeS.

16



Prédicat Signification
Triangle(x) x est un triangle
Square(x) x est un carré

Pentagon(x) x est un pentagone
Small(x) x est petit

Medium(x) x est moyen
Large(x) x est grand

Smaller(x, y) x est strictement plus petit que y

SameSize(x, y) x est de même taille que y

LeftOf(x, y) x est à gauche de y

SameRow(x, y) x est sur la même ligne que y

SameCol(x, y) x est sur la même colonne que y

Between(x, y, z) x est entre y et z sur une même ligne, colonne ou diagonale
x = y x et y représentent le même objet
x /= y x et y représentent des objets distincts

Table 1.1: Prédicats du langage TarskiUdeS

1.2.3 TarskiUdeS

Le logiciel TarskiUdeS permet de se familiariser avec la logique du premier ordre. Il a été développé
à l’Université de Sherbrooke par Tristen Bronson et Laurent Beauchemin dans le cadre d’un projet
informatique, à partir d’une version initiale développée par Robert Stärk. Il est inspiré du logi-
ciel Tarski’s World [2] développé à Stanford par les logiciens Jon Barwise et John Etchemendy3.
TarskiUdeS comporte plusieurs améliorations qui facilite son utilisation et la vérification d’une
formule. Il est nommé ainsi en l’honneur du mathématicien et logicien Alfred Tarski4

1.2.3.1 Syntaxe du langage TarskiUdeS

Le langage porte sur un monde composé d’objets dans un plan. Il y a trois types d’objets: triangle,
carré et pentagone. Chaque objet a une taille: petit, moyen et grand. On peut associer une
lettre à un objet, en double-cliquant l’objet, ce qui permet de référer à cet objet dans une formule.
Le langage contient les prédicats décrits dans le tableau 1.1, où les variable x, y, z dénotent des
objets. On utilise la syntaxe données au tableau 1.2 pour représenter les connecteurs logiques dans
TarskiUdeS, avec leur priorité, la priorité 1 étant la plus forte. Les formules quantifiées doivent
être parenthésées.

!x.(Large(x) & Square(x))

3En plus d’être logicien et philosophe, John Etchemendy fut aussi recteur de l’Université Stanford de 2010 à 2017,
comme quoi la logique mène à tout!

4Alfred Tarski (1901–1983) fut l’un des logiciens les plus importants du vingtième siècle, et un mathématicien
prolifique. Juif polonais, il fut sauvé bien malgré lui de l’extermination systématique des juifs polonais durant la
deuxième guerre mondiale, en prenant le dernier bateau qui quitta la Pologne pour les États-Unis en août 1939, étant
invité à prononcer une conférence au Symposium de l’Unité de la science à Harvard. La Pologne fut envahie par
l’Allemagne et la Russie en septembre 1939, ce qui marqua le début de la deuxième guerre mondiale. Tarski devint
professeur à Berkeley en 1942 et y demeura jusqu’à sa mort, continuant à superviser des étudiants au doctorat même
après sa retraite. Il dirigea au doctorat un nombre important de femmes, ce qui est remarquable pour l’époque.
Tarski fit d’importantes contributions en logique, en algèbre et en théorie des ensembles, entre autres.
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Symbole mathématique TarskiUdeS Priorité
∀x · !x.( ... ) 0
∃x · #x.( ... ) 0
¬ not 1
∧ & 2
∨ or 3
⇒ => 4
⇔ <=> 5

Table 1.2: Syntaxe du langage TarskiUdeS

ce qui représente la formule mathématique suivante dans la notation usuelle des notes de cours:

∀x · Large(x) ∧ Square(x)

Si les parenthèses étaient omises, comme dans l’exemple ci-dessous, une erreur de syntaxe serait
générée (x is not defined).

Large(x)

La variable x est libre dans la formule Large(x), car il n’y a pas de quantificateur qui introduit
la variable x. TarskiUdeS ne peut pas évaluer les formules non fermées, c’est-à-dire les formules
qui contiennent une variable libre (voir définition 6). Les autres opérateurs utilisent la précédence
usuelle des notes de cours. Par exemple, la formule

!x.(Square(x) & Large(x) => not Triangle(x) or Small(x))

est parenthésée implicitement comme suit, à cause la priorité des opérateurs

!x.((Square(x) & Large(x)) => ((not Triangle(x)) or Small(x)))

Afin de simplifier la lecture des formules, vous pouvez utiliser le formattage automatique des for-
mules, avec la commande CTRL-SHIFT-F. Par exemple, la formule ci-dessus sera indentée comme
suit:

!x.
(

Square(x)
&

Large(x)
=>

not
Triangle(x)

or
Small(x)

)

On utilise des parenthèses pour imposer un ordre d’évaluation des opérateurs, comme on le fait en
arithmétique. La figure 1.3 illustre un monde où tous les types d’objets et de tailles sont illustrés.
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1.2.3.2 Vérifier votre compréhension des formules

Tarksi UdeS vous permet de vérifier votre compréhension d’une formule et de la tester. Pour tester,
on veut explorer différents cas; en particulier, il faut explorer des cas où la formule est vraie, mais
aussi des cas où la formule est fausse. Par exemple, si on vous demande de formaliser la phrase
« Tous les objets sont grands » , et que vous produisez la formule ∀x · x = x en réponse, alors
effectivement la formule est vraie dans un monde où tous les objets sont grands, mais elle est aussi
vraie dans n’importe quel monde, entre autres ceux où au moins un objet n’est pas grand. Pour
vérifier une formule, il faut donc la tester sur des mondes où elle devrait être vraie et sur des mondes
où elle devrait être fausse, afin de s’assurer que la formule représente exactement les mondes où la
phrase devrait être vraie.

Pour chaque monde, vous devez indiquer si la formule devrait être vraie ou fausse, avec le bouton
« Formula is » , qui indique votre objectif de test avec le monde. Si vous pensez que la formule est
fausse, vous sélectionnez alors false, sinon vous sélectionnez true. Le triangle vert ( ) permet
ensuite d’évaluer la formule sur le monde; TarskiUdeS indique alors si votre test est satisfait ( )
ou insatisfait ( ). La formule de la figure 1.3 est une tautologie, donc elle est vraie peu importe le
monde (car si un objet est un grand carré, alors ce n’est pas un triangle). C’est donc une formule
peu intéressante.

Le nombre de cas de test est difficile à déterminer en général en informatique. On ne peut pas
tester exhaustivement tous les cas possibles pour un programme, même le plus simple, car ils sont
trop nombreux. Il y a 1064 tests possibles pour une formule en TarskiUdeS. Bien sûr, plusieurs
cas se ressemblent et ne testent pas quelque chose de différent d’un autre. Il faut donc trouver des
cas de tests "représentatifs", et on voit dans le cours IGL601 des critères et des algorithmes pour
générer des cas de test selon une approche systématique. Ce sujet est trop avancé pour MAT115.
Dans le cadre de MAT115, nous nous contenterons d’identifier de manière informelle les cas de tests,
en analysant la forme de la formule et la phrase à formaliser. Pour chaque opérateur, on teste les
cas ou il est vrai et il est faux, en regroupant les opérateurs similaires (par exemple, on teste une
suite de conjunctions seulement 2 fois). La combinaison des opérateurs multiplie le nombre de tests
à faire. On se limite à un nombre raisonnable de tests en fonction du temps disponible.

Notons que les tests ne garantissent pas l’absence d’erreurs dans un logiciel. Seule une preuve
mathématique permet de conclure qu’un logiciel est conforme à sa spécification et garantit l’absence
d’erreurs. C’est l’à une des applications les plus importantes de la logique en informatique.

Les exemples de la section suivante illustrent quelques exemples de formules.

19



F
igure

1.3:
U

n
exem

ple
de

m
onde

dans
T
a
r
sk

iU
d
eS

20



1.2.3.3 Exemples

Voici quelques exemples de phrases représentées par des formules qui sont vraies dans le monde
de la figure 1.3. Pour chaque formule, nous donnons une version écrite en syntaxe mathématique
traditionnelle avec le nombre minimum de parenthèses selon la précédence définie à la remarque 4
page 14, et l’autre en utilisant la syntaxe du langage TarskiUdeS.

1. « L’objet a est un triangle de grande taille. »

Triangle(a) ∧ Large(a)

Triangle(a) & Large(a)

Dans cet exemple, la formule porte sur un objet particulier, le triangle a. Le symbole a est
donc une constante du langage, tel que décrit à la définition 2; ce n’est pas une variable. Dans
TarskiUdeS, si on veut définir une variable, il faut l’introduire avec un quantificateur ∀ ou
∃.

2. « Le carré b est situé entre les objets a et c. »

Square(b) ∧ Between(b, a, c)

Square(b) & Between(b,a,c)

Ici aussi, les symboles a, b, c sont des constantes qui dénotent des objets particuliers.

3. « Tous les objets de grande taille sont sur la même ligne. »

∀x · ∀y · Large(x) ∧ Large(y)⇒ SameRow(x, y)

!x.(!y.(Large(x) & Large(y) => SameRow(x,y)))

Cette phrase ne vise pas un objet en particulier, mais des objets quelconques du monde. Il
faut donc utiliser des variables, x, y, introduites par un quantificateur. C’est ce qui distingue
une variable d’une constante dans TarskiUdeS: une variable doit être introduite par un
quantificateur universel ou existentiel; une constante est déclarée dans le monde en l’associant
à une objet lors de sa création ou modification. Pour formaliser cette phrase, il suffit d’utiliser
deux variables. Ces variables permettront de comparer chaque paire d’objets. Ainsi, la formule
quantifiée est traduite par la formule suivante, qui est une conjonction de tous les cas possibles
de valeurs pour x et y (il y en a 9 ∗ 9 = 81).

1 (Large(a) ∧ Large(a)⇒ SameRow(a, a))
2 ∧ (Large(a) ∧ Large(b)⇒ SameRow(a, b))
∧ . . .

9 ∧ (Large(a) ∧ Large(j)⇒ SameRow(a, j))
10 ∧ (Large(b) ∧ Large(a)⇒ SameRow(b, a))
11 ∧ (Large(b) ∧ Large(b)⇒ SameRow(b, b))
∧ . . .

81 ∧ (Large(j) ∧ Large(j)⇒ SameRow(j, j))

Examinons le cas no 9. L’opérande de gauche de l’implication (⇒) est une conjonction dont la
valeur est fausse, car l’objet j n’est pas de grande taille (il est de taille petite). L’implication
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est donc vraie. Le cas no 9 traite un objet grand et un objet petit, donc, ces objets n’ont pas
besoin d’être sur la même ligne. Il est très fréquent d’utiliser une implication à l’intérieur d’une
quantification universelle, car une phrase porte généralement sur un sous-ensemble d’objets.
On utilise l’opérande de gauche de «⇒ » pour indiquer à quels objets on s’intéresse dans la
phrase à formaliser. On note aussi que les cas où x = y sont aussi traités systématiquement.
Par exemple, pour le cas 1, la formule est vraie aussi, car a est grand et sur la même ligne que
lui-même.

Puisque la formule est vraie dans tous les cas, la formule quantifiée originale est donc vraie.

4. « Il y a au moins un objet de grande taille pour chaque type d’objet. »

∃x · (Large(x) ∧ Pentagon(x))
∧ ∃x · (Large(x) ∧ Square(x))
∧ ∃x · (Large(x) ∧ Triangle(x))

#x.(Large(x) & Pentagon(x))
& #x.(Large(x) & Square(x))
& #x.(Large(x) & Triangle(x))

On utilise une conjonction de trois quantifications existentielles, chacune traitant un type
d’objet. Cette formule se traduit de la manière suivante pour éliminer le ∃. Chaque occurrence
du quantificateur ∃ est remplacée par une disjonction des 9 cas possibles, c’est-à-dire un cas
pour chaque objet du monde.

( (Large(a) ∧ Pentagon(a))
∨ . . .
∨ (Large(j) ∧ Pentagon(j))

)
∧ ( (Large(a) ∧ Square(a))

∨ . . .
∨ (Large(j) ∧ Square(j))

)
∧ ( (Large(a) ∧ Triangle(a))

∨ . . .
∨ (Large(j) ∧ Triangle(j))

)

5. « Tous les carrés sont situés entre un pentagone à gauche et un triangle à droite, de même
taille, sur la même ligne. »
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∀x·
(

Square(x)
⇒ ∃y · ∃z·

( Pentagon(y)
∧Triangle(z)
∧Between(x, y, z)
∧ LeftOf(y, z)
∧ SameRow(y, z)
∧ SameSize(x, y)
∧ SameSize(y, z)
)

)

!x.
(

Square(x)
=> #y.(#z.

( Pentagon(y)
& Triangle(z)
& Between(x,y,z)
& SameSize(x,y)
& SameSize(y,z)
))

)

Ce dernier exemple démontre l’importance de l’ordre des quantificateurs. Le quantificateur ∀
doit précéder les quantificateurs ∃, car cela permet de « choisir » pour chaque valeur de x,
une nouvelle valeur pour y et z. L’exemple suivant illustre le cas inverse.

6. « Il existe un carré situé à gauche de tous les pentagones »

Cette phrase est fausse dans le monde de la figure 1.3, mais elle est vraie dans le monde
ci-dessous. Elle permet d’illustrer l’ordre des quantificateurs.

Voici sa formalisation.

∃x · (Square(x) ∧ (∀y · (Pentagon(y)⇒ LeftOf(x, y))))

#x.(Square(x) & (!y.(Pentagon(y) => LeftOf(x,y))))
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Et voici sa traduction. Il y a 4 ∗ 4 = 16 cas à considérer.

1 (Square(a) ∧ ( (Pentagon(a)⇒ LeftOf(a, a)) 1.1
∧ (Pentagon(b)⇒ LeftOf(a, b)) 1.2
∧ (Pentagon(c)⇒ LeftOf(a, c)) 1.3
∧ (Pentagon(d)⇒ LeftOf(a, d)) 1.4
))

2 ∨ (Square(b) ∧ ( (Pentagon(a)⇒ LeftOf(b, a)) 2.1
∧ (Pentagon(b)⇒ LeftOf(b, b)) 2.2
∧ (Pentagon(c)⇒ LeftOf(b, c)) 2.3
∧ (Pentagon(d)⇒ LeftOf(b, d)) 2.4
))

3 ∨ (Square(c) ∧ ( (Pentagon(a)⇒ LeftOf(c, a)) 3.1
∧ (Pentagon(b)⇒ LeftOf(c, b)) 3.2
∧ (Pentagon(c)⇒ LeftOf(c, c)) 3.3
∧ (Pentagon(d)⇒ LeftOf(c, d)) 3.4
))

4 ∨ (Square(d) ∧ ( (Pentagon(a)⇒ LeftOf(d, a)) 4.1
∧ (Pentagon(b)⇒ LeftOf(d, b)) 4.2
∧ (Pentagon(c)⇒ LeftOf(d, c)) 4.3
∧ (Pentagon(d)⇒ LeftOf(d, d)) 4.4
))

Le prédicat Square est vrai seulement dans les cas 1 et 2. Dans le cas 1, toutes les sous-
formules sont vraies. La formule est donc vraie. Dans le cas 2, la sous-fourmule 2.3 est fausse
car Pentagon(c) est vrai mais LeftOf(b, c) est faux, donc la formule Pentagon(c)⇒ LeftOf(b, c)
est fausse.

7. « Le carré a est situé à la gauche de tous les autres carrés »

Cette phrase est fausse dans le monde de la figure 1.3, mais elle est vraie dans le monde
ci-dessous. Elle permet d’illustrer l’inégalité, afin de ne pas comparer a avec lui-même dans
la quantification.

Voici sa formalisation.

Square(a) ∧ ∀x · Square(x) ∧ x ̸= a⇒ LeftOf(a, x)

Square(a) & !x.(Square(x) & x /= a => LeftOf(a,x))
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Notons qu’une erreur typique pour la formalisation de ce type phrase est justement d’oublier
l’inégalité. Ainsi, la formule suivante est fausse, car le ∀x · . . . compare a avec lui-même.

Square(a) ∧ ∀x · Square(x)⇒ LeftOf(a, x)

1.2.3.4 Erreurs

TarskiUdeS vérifie la syntaxe de votre formule au fur et à mesure qu’elle est tapée. Les parties
en erreur sont soulignées dans la formule. La console Parser Log contient les messages d’erreurs.
Lors de l’évaluation, TarskiUdeS peut être incapable d’évaluer une formule si un symbole n’est
pas introduit par un quantificateur et si aucun objet n’est identifié par ce symbole. Cette erreur est
affiché dans la console Eval Log

[17:38:00] [Tarski] - Starting evaluator task...
[17:38:00] [Formula-3 / World-0] - x is not defined
[17:38:00] [Tarski] - Evaluator task finished.

Vous pouvez utiliser le bouton pour vous aider à corriger une formule lorsque son éval-
uation ne retourne pas la valeur que vous attendiez dans un monde. Par exemple, si vous pensiez
que la formule suivante est vraie,

et que l’évaluation retourne faux, vous appuyez sur le bouton Debug World, et TarskiUdeS vous
indique alors pourquoi la formule est fausse, en vous montrant la valeur de chaque sous-formule.

La formule est vraie pour le premier objet, qui est un petit carré, mais elle est fausse pour le
deuxième, qui est un grand triangle.

1.2.4 Formes typiques des formules quantifiées

On remarque deux formes typiques pour les formules quantifiées.

1.2.4.1 Quantificateur universel

Pour un quantificateur universel, on a:
∀x · A⇒ B

Cette forme correspond à des phrases de la forme suivante:

Tous les A satisfont la propriété B.
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Voici quelques exemples concrets de cette forme avec leur formalisation.

1. Tous les carrés sont petits.
Un carré est petit.
Les carrés sont petits.
Ce qui est carré est petit.
∀x · Square(x)⇒ Small(x)

2. Tous les petits carrés sont sur la même ligne.
Les petits carrés sont sur la même ligne.
Si deux carrés sont petits, alors ils sont sur la même ligne.
∀x · ∀y · Square(x) ∧ Small(x) ∧ Square(y) ∧ Small(y)⇒ SameRow(x, y)

On remarque que le prédicat Small apparait dans les deux exemples, mais pas à la même place dans
la formalisation. Dans le premier exemple, « petit » dénote une propriété des carrés, alors que dans
le deuxième, on a deux propriétés pour les carrés. Être sur la même ligne dépend d’être petit, c-à-d
que si un objet est un petit carré, alors il doit être sur la même ligne que tous les autres petits
carré. Si un objet n’est pas un petit carré, alors la phrase ne lui impose aucune contrainte. On
retrouve donc « petit » à gauche plutôt qu’à droite dans le deuxième exemple. Nous verrons la loi
de la logique (LP-37) qui nous permet de conclure que la formule suivante est une formalisation
équivalente du deuxième exemple.

∀x · ∀y · Square(x)⇒ (Small(x)⇒ (Square(y)⇒ (Small(y)⇒ SameRow(x, y))))

Par soucis de lisibilité, on utilise plutôt la première forme.
Il n’est pas toujours nécessaire d’utiliser une implication avec un quantificateur universel. Par

exemple, la phrase suivante

Tous les objets sont des petits carrés.

est formalisée comme suit.

∀x · Square(x) ∧ Small(x)

Elle ne requière pas d’implication, car la propriété « petit carré » s’applique à tous les objets.

1.2.4.2 Quantificateur existentiel

Pour un quantificateur existentiel, la forme typique est la suivante

∃x · A ∧ B

Voici quelques exemples concrets de cette forme avec leur formalisation.

1. Il existe un petit carré.
Il y a au moins un petit carré.
∃x · Square(x) ∧ Small(x)

2. Il existe un petit carré ayant à sa droite un grand triangle.
∃x · Square(x) ∧ Small(x) ∧ ∃y · Triangle(y) ∧ LeftOf(x, y)

La forme
∃x · A⇒ B

n’est quasiment jamais utilisée, car elle est très facilement satisfaisable. En effet, il suffit de trouver
un objet qui ne satisfait pas A, et la formule est satisfaite, car une implication est vraie si son
opérande de gauche est fausse.
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1.2.5 Formalisation de texte en langage naturel

Voici un petit exemple de formalisation de texte en logique du premier ordre. Considérons cet
extrait du règlement des études, que nous allons formaliser:

« Une activité pédagogique, en lien avec une autre, est :

• préalable, si elle doit être réussie avant l’inscription à une autre;
• antérieure, si elle doit être complétée avant une autre, sans exigence de réussite;
• concomitante, si elle doit être suivie en même temps qu’une autre, à moins d’avoir

été réussie. »

Pour simplifier le jargon universitaire, nous utiliserons le terme cours au lieu du terme activité
pédagogique dans la suite.

Pour formaliser ce texte, nous avons besoin de définir des prédicats et d’utiliser des variables.

1. peutSInscrire(e, c) : retourne vrai si, et seulement si, l’étudiant e peut s’inscrire au cours c.

2. réussi(e, c) : retourne vrai si, et seulement si, l’étudiant e a réussi le cours c.

3. suivi(e, c) : retourne vrai si, et seulement si, l’étudiant e a suivi le cours c. Notons que cela ne
signifie pas que l’étudiant a réussi le cours.

4. préalable(c1, c2) : retourne vrai si, et seulement si, le cours c1 est préalable au cours c2.

5. antérieur(c1, c2) : retourne vrai si, et seulement si, le cours c1 est antérieur au cours c2.

6. concomitant(c1, c2) : retourne vrai si, et seulement si, le cours c1 est concomitant au cours c2.

Préalable est une condition nécessaire pour s’inscrire à un cours, mais elle n’est pas une condition
suffisante. Il existe d’autres conditions nécessaires pour pouvoir s’inscrire à un cours, soit d’avoir
payé ses frais de scolarité des sessions antérieures, avoir payés ses amendes à la bibliothèque, etc.
Voici une formalisation d’une propriété de la notion de préalable.

∀e, c2 · peutSInscrire(e, c2)⇒ (∀c1 · préalable(c1, c2)⇒ réussi(e, c1)) (1.23)

Notons que cette formalisation utilise une implication, au lieu d’une équivalence. Elle indique que
préalable est une condition nécessaire pour s’inscrire, mais elle n’est pas suffisante. Dans le contexte
universitaire, le prédicat préalable est défini par énumération de tous les préalables. Pour connaître
l’impact de ce prédicat sur le reste des règlements universitaire, on donne une formule qui énumère
une propriété de préalable. Donc, avoir réussi les préalables est une condition nécessaire pour
pouvoir s’inscrire à un cours, ce qui correspond à la forme suivante, équivalente à la forme (1.24),
grâce aux lois (LP-38) et (LPO-26).

∀e, c1, c2 · préalable(c1, c2)⇒ (peutSInscrire(e, c2)⇒ réussi(e, c1)) (1.24)

Par souci de lisibilité, on peut aussi écrire la formule (1.24) en l’indentant comme suit:

∀e, c1, c2 ·
préalable(c1, c2)

⇒
( peutSInscrire(e, c2)
⇒

réussi(e, c1)
)
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Voici une formalisation de antérieur

∀e, c1, c2 · antérieur(c1, c2)⇒ (peutSInscrire(e, c2)⇒ suivi(e, c1))

∀e, c1, c2 ·
antérieur(c1, c2)

⇒
( peutSInscrire(e, c2)
⇒

suivi(e, c1)
)

Voici une formalisation de concomittant

∀e, c1, c2 · concomitant(c1, c2)⇒ (peutSInscrire(e, c2)⇒ réussi(e, c1) ∨ peutSInscrire(e, c1))

∀e, c1, c2 ·
concomitant(c1, c2)

⇒
( peutSInscrire(e, c2)
⇒

réussi(e, c1)
∨

peutSInscrire(e, c1)
)

1.3 Lois de la logique

1.3.1 Lois de la logique propositionnelle (tautologies)

Une tautologie est une formule de logique propositionnelle dont la valeur est vrai pour toutes les
combinaisons possibles des valeurs des variables propositionnelles. Autrement dit, une tautologie
est une formule qui est toujours vraie. Par exemple, voici deux tautologies très connues, identifiées
par Augustus De Morgan5 , et communément appelées Lois de De Morgan.

¬(A ∧ B)⇔ ¬A∨ ¬B (LP-17)

¬(A ∨ B)⇔ ¬A∧ ¬B (LP-18)

Voici le calcul de la valeur de vérité de la formule (LP-17), en utilisant une forme encore plus
compacte. La valeur de vérité de chaque partie de la formule est donnée sous le connecteur principal
de cette partie. La valeur de vérité de la formule est donc donnée sous la colonne (en rouge) du
connecteur «⇔ » pour cet exemple.

no A B ¬( A ∧ B) ⇔ ¬ A ∨ ¬ B
1 0 0 1 0 0 0 1 1 0 1 1 0

2 0 1 1 0 0 1 1 1 0 1 0 1

3 1 0 1 1 0 0 1 0 1 1 1 0

4 1 1 0 1 1 1 1 0 1 0 0 1

5Augustus De Morgan (1806–1871) est un mathématicien et logicien britannique, né en Inde. Il est un des
fondateurs de la logique moderne; en plus des lois (LP-17) et (LP-18), il a aussi formalisé le concept d’induction
mathématique, que nous verrons au chapitre 3.
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Les tautologies sont importantes, car elles sont à la source de lois de la logique propositionnelle.
Entre autres, les tautologies de la forme A ⇔ B nous permettent de remplacer la formule A par
la formule B, et vice-versa, car les deux formules sont équivalentes, au sens où la valeur de vérité
de A est la même que celle de B, peu importe la valeur des variables propositionnelles. On peut
remplacer A par B lorsque A est une sous-formule d’une formule, exactement comme pour l’égalité
entre les nombres. Les tautologies de la forme A ⇒ B nous permettent de déduire la formule B de
la formule A si on sait que A est vrai, car si A est vraie, alors B est vraie, selon la table de vérité
de «⇒ » . Les tables 1.3, 1.4, 1.5, 1.6 donnent une liste des principales tautologies.

élément absorbant et A ∧ faux ⇔ faux (LP-1)
élément absorbant ou A ∨ vrai ⇔ vrai (LP-2)
élement neutre et A ∧ vrai ⇔ A (LP-3)
élement neutre ou A ∨ faux ⇔ A (LP-4)
idempotence et A ∧A ⇔ A (LP-5)
idempotence ou A ∨A ⇔ A (LP-6)
commutativité et A ∧ B ⇔ B ∧A (LP-7)
commutativité ou A ∨ B ⇔ B ∨A (LP-8)
associativité et A ∧ (B ∧ C) ⇔ (A ∧ B) ∧ C (LP-9)
associativité ou A ∨ (B ∨ C) ⇔ (A ∨ B) ∨ C (LP-10)
distributivité et sur ou A ∧ (B ∨ C) ⇔ (A ∧ B) ∨ (A ∧ C) (LP-11)
distributivité ou sur et A ∨ (B ∧ C) ⇔ (A ∨ B) ∧ (A ∨ C) (LP-12)
absorbtion et sur ou A ∧ (A ∨ B) ⇔ A (LP-13)
absorbtion ou sur et A ∨ (A ∧ B) ⇔ A (LP-14)
absorbtion et avec négation A ∧ (¬A ∨ B) ⇔ A∧ B (LP-15)
absorbtion ou avec négation A ∨ (¬A ∧ B) ⇔ A∨ B (LP-16)
De Morgan négation et ¬(A ∧ B) ⇔ ¬A∨ ¬B (LP-17)
De Morgan négation ou ¬(A ∨ B) ⇔ ¬A∧ ¬B (LP-18)
contradiction A ∧ ¬A ⇔ faux (LP-19)
tiers exclu A ∨ ¬A ⇔ vrai (LP-20)
involution ¬¬A ⇔ A (LP-21)

Table 1.3: Lois de ∧, ∨ et ¬
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implication comme disjonction A ⇒ B ⇔ ¬A ∨ B (LP-22)
implication comme tiers exclu A ⇒ A ⇔ vrai (LP-23)
implication comme négation et A ⇒ B ⇔ ¬(A ∧ ¬B) (LP-24)
négation implication ¬(A ⇒ B) ⇔ A∧ ¬B (LP-25)
Contraposée A ⇒ B ⇔ ¬B ⇒ ¬A (LP-26)
implication divers 1 A ⇒ vrai ⇔ vrai (LP-27)
implication divers 2 vrai⇒ A ⇔ A (LP-28)
implication divers 3 A ⇒ faux ⇔ ¬A (LP-29)
implication divers 4 faux⇒ A ⇔ vrai (LP-30)
implication divers 5 A ⇒ ¬A ⇔ ¬A (LP-31)
implication divers 6 ¬A ⇒ A ⇔ A (LP-32)
distributivité implication et gauche C ⇒ (A ∧ B) ⇔ (C ⇒ A) ∧ (C ⇒ B) (LP-33)
distributivité implication ou gauche C ⇒ (A ∨ B) ⇔ (C ⇒ A) ∨ (C ⇒ B) (LP-34)
distributivité implication et droite (A ∧ B)⇒ C ⇔ (A ⇒ C) ∨ (B ⇒ C) (LP-35)
distributivité implication ou droite (A ∨ B)⇒ C ⇔ (A ⇒ C) ∧ (B ⇒ C) (LP-36)
implication conjonction A ⇒ (B ⇒ C) ⇔ (A ∧ B)⇒ C (LP-37)
implication conjonction A ⇒ (B ⇒ C) ⇔ B ⇒ (A ⇒ C) (LP-38)
définition par cas (A ⇒ B) ∧ (¬A ⇒ C) ⇔ (A ∧ B) ∨ (¬A ∧ C) (LP-39)

Table 1.4: Lois de ⇒

équivalence comme implication (A ⇔ B) ⇔ (A ⇒ B) ∧ (B ⇒ A) (LP-40)
équivalence comme ou (A ⇔ B) ⇔ (A ∧ B) ∨ ¬(A ∨ B) (LP-41)
équivalence comme négation (A ⇔ B) ⇔ (¬A ⇔ ¬B) (LP-42)
commutativité de l’équivalence (A ⇔ B) ⇔ (B ⇔ A) (LP-43)
associativité de l’équivalence (A ⇔ (B ⇔ C)) ⇔ ((A ⇔ B)⇔ C) (LP-44)
équivalence divers 1 (A ⇔ A) ⇔ vrai (LP-45)
équivalence divers 2 (A ⇔ ¬A) ⇔ faux (LP-46)
équivalence divers 3 (A ⇔ vrai) ⇔ A (LP-47)
équivalence divers 4 (A ⇔ faux) ⇔ ¬A (LP-48)
équivalence divers 5 (A ⇒ B) ⇔ (A ⇔ (A ∧ B)) (LP-49)
équivalence divers 6 (A ⇒ B) ⇔ (B ⇔ (A ∨ B)) (LP-50)
équivalence divers 7 (A ∨ (B ⇔ C)) ⇔ ((A ∨ B)⇔ (A ∨ C)) (LP-51)
équivalence négation ¬(A ⇔ B) ⇔ (¬A ⇔ B) (LP-52)

Table 1.5: Lois de ⇔

ou exclusif 2 A⊕ B ⇔ ¬(A ⇔ B) (LP-53)
ou exclusif 3 A⊕ B ⇔ (A ∨ B) ∧ ¬(A ∧ B) (LP-54)
ou exclusif 4 A⊕ B ⇔ (A ∧ ¬B) ∨ (¬A ∧ B) (LP-55)

Table 1.6: Lois de ⊕
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loi du plus fort (A⇒B) ⇒ (A ∧ B ⇔ A) (LP-56)

Table 1.7: Lois diverses en logique propositionnelle

1.3.2 Lois de la logique du premier ordre

On utilise aussi A,B, . . . pour désigner des formules de logique du premier ordre. On utilise N pour
désigner une formule où x n’est pas libre (c’est-à-dire, il n’y a aucune occurrence libre de x dans
N ). Les lois de la logique propositionnelle s’appliquent aussi à la logique du premier ordre.

point univ (∀x · x = t⇒ A) ⇔ A[x := t] (LPO-1)
point exist (∃x · x = t ∧ A) ⇔ A[x := t] (LPO-2)
point univ ensemble (∀x · x ∈ {t1, . . . , tn}⇒A) ⇔ A[x := t1] ∧ . . . ∧ A[x := tn] (LPO-3)
point existe ensemble (∃x · x ∈ {t1, . . . , tn} ∧ A) ⇔ A[x := t1] ∨ . . . ∨ A[x := tn] (LPO-4)
idempotence univ (∀x · ∀x · A) ⇔ ∀x · A (LPO-5)
idempotence exist (∃x · ∃x · A) ⇔ ∃x · A (LPO-6)
permutation univ (∀x · ∀y · A) ⇔ ∀y · ∀x · A (LPO-7)
permutation exist (∃x · ∃y · A) ⇔ ∃y · ∃x · A (LPO-8)
univ en exist (∀x · A) ⇔ ¬∃x · ¬A (LPO-9)
exist en univ (∃x · A) ⇔ ¬∀x · ¬A (LPO-10)
De Morgan univ (¬∀x · A) ⇔ ∃x · ¬A (LPO-11)
De Morgan exist (¬∃x · A) ⇔ ∀x · ¬A (LPO-12)
distribution univ (∀x · A ∧ B) ⇔ (∀x · A) ∧ (∀x · B) (LPO-13)
distribution exist (∃x · A ∨ B) ⇔ (∃x · A) ∨ (∃x · B) (LPO-14)
exist avec implication (∃x · A ⇒ B) ⇔ (∀x · A)⇒ (∃x · B) (LPO-15)

Table 1.8: Lois d’équivalence des formules du premier ordre

univ exist (∀x · A) ⇒ ∃x · A (LPO-16)
univ ou (∀x · A) ∨ (∀x · B) ⇒ ∀x · A ∨ B (LPO-17)
univ avec implication (∀x · A ⇒ B) ⇒ (∀x · A)⇒ (∀x · B) (LPO-18)
exist avec et (∃x · A ∧ B) ⇒ (∃x · A) ∧ (∃x · B) (LPO-19)
exist avec ou (∃x · A)⇒ (∃x · B) ⇒ ∃x · A ⇒ B (LPO-20)
exist sur univ (∃x · ∀y · A) ⇒ ∀y · ∃x · A (LPO-21)
univ point (∀x · A) ⇒ A[x := t] (LPO-22)
univ point A[x := t] ⇒ ∃x · A (LPO-23)

Table 1.9: Lois d’implication des formules du premier ordre
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déplacement univ et (∀x · N ∧ A) ⇔ N ∧ ∀x · A (LPO-24)
déplacement univ ou (∀x · N ∨ A) ⇔ N ∨ ∀x · A (LPO-25)
déplacement univ implication 1 (∀x · N ⇒ A) ⇔ N ⇒ ∀x · A (LPO-26)
déplacement univ implication 2 (∀x · A ⇒ N ) ⇔ (∃x · A)⇒ N (LPO-27)
déplacement exist et (∃x · N ∧ A) ⇔ N ∧ ∃x · A (LPO-28)
déplacement exist ou (∃x · N ∨ A) ⇔ N ∨ ∃x · A (LPO-29)
déplacement exist implication 1 (∃x · N ⇒ A) ⇔ N ⇒ ∃x · A (LPO-30)
déplacement exist implication 2 (∃x · A ⇒ N ) ⇔ (∀x · A)⇒ N (LPO-31)
absorption exist (∃x · N ) ⇔ N (LPO-32)
absorption univ (∀x · N ) ⇔ N (LPO-33)

Table 1.10: Lois de déplacement des quantificateurs

1.4 Preuve en logique propositionnelle

1.4.1 Preuve par équivalence

Nous utiliserons la convention suivante pour faciliter la lecture de certaines preuves, en identifiant
ce qui change d’une ligne à l’autre à l’aide des symboles ⌞ ⌟ et ⌜ ⌝.

A1 . . . ⌞A2⌟ . . .A3

⇔ ⟨ étape 1 ⟩
A1 . . . ⌜A4

⌝ . . . ⌞A3⌟
⇔ ⟨ étape 2 ⟩
A1 . . .A4 . . . ⌜A5

⌝

Une formule entourée des symboles ⌞ ⌟ est réécrite sur la ligne suivante dans la formule ⌜ ⌝. Dans
l’exemple ci-dessus, A2 est réécrit en A4 à l’étape 1, et A3 est réécrite en A5 à l’étape 2. Si les
symboles ⌜ ⌝ n’apparaissent pas dans la ligne en-dessous, cela veut dire que l’expression entourée de
⌞ ⌟ de la ligne au-dessus est supprimée par la réécriture dans l’étape de preuve. Voici un exemple

A1 ∧ ⌞A1⌟
⇔ ⟨ (LP-5) ⟩
A1

Les lois des tableaux 1.3, 1.4, 1.5, 1.6 nous permettent de faire des preuves, c’est-à-dire de
déduire une formule à partir d’autres formules. Par exemple, on peut déduire la formule (LP-33)
à partir des formules (LP-12) et (LP-22). Voici une manière assez naturelle de représenter cette
preuve.

C ⇒ (A ∧ B)
⇔ ⟨ (LP-22) ⟩
¬C ∨ (A ∧ B)

⇔ ⟨ (LP-12) ⟩
(⌞¬C ∨ A⌟) ∧ (⌞¬C ∨ B⌟)

⇔ ⟨ (LP-22) ⟩
(⌜C ⇒ A⌝) ∧ (⌜C ⇒ B⌝)

Chaque étape de raisonnement de cette preuve est de la forme
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D
⇔ ⟨ justification ⟩
E

Le connecteur ⇔ est transitif, c’est-à-dire que si on a les formules A ⇔ B et B ⇔ C que l’on
considère vraies, alors on peut déduire que A ⇔ C est vraie; le connecteur «⇔ » est similaire à
l’égalité « = » sur les nombres. On utilisant la transitivité, la preuve ci-dessus permet de conclure
que la première formule est équivalente à la dernière, donc

C ⇒ (A ∧ B) ⇔ (C ⇒ A) ∧ (C ⇒ B)

Dans cette preuve, nous avons utilisé deux lois, (LP-12) et (LP-22), pour déduire (LP-33). Nous
allons exprimer cela de manière formelle en utilisant la notation suivante:

(LP-12), (LP-22) ⊢ (LP-33)

Voici une preuve assez complexe de la loi (LP-39) en utilisant seulement les lois de (LP-1) à
(LP-22).

(⌞A ⇒ B⌟) ∧ (⌞¬A ⇒ C⌟)
⇔ ⟨ (LP-22) deux fois ⟩

(⌜¬A ∨ B⌝) ∧ (⌜⌞¬¬A⌟ ∨ C⌝)
⇔ ⟨ (LP-21) ⟩

(¬A ∨ B) ∧ (⌜A⌝ ∨ C)
⇔ ⟨ (LP-11) deux fois ⟩

⌞(¬A ∧A)⌟ ∨ (¬A ∧ C) ∨ (B ∧ A) ∨ (B ∧ C)
⇔ ⟨ (LP-19) ⟩

⌞
⌜faux⌝ ∨ (¬A ∧ C) ∨ (B ∧ A) ∨ (B ∧ C)⌟

⇔ ⟨ (LP-4) ⟩
(¬A ∧ C) ∨ (B ∧ A) ∨ (B ∧ C)

⇔ ⟨ (LP-3) ⟩
(¬A ∧ C) ∨ (B ∧ A) ∨ ((B ∧ C) ∧ ⌞vrai⌟)

⇔ ⟨ (LP-20) ⟩
(¬A ∧ C) ∨ (B ∧ A) ∨ (⌞(B ∧ C) ∧ (⌜A ∨ ¬A⌝)⌟)

⇔ ⟨ (LP-11) ⟩
(¬A ∧ C) ∨ (B ∧ A) ∨ ⌜(B ∧ C ∧ A) ∨ (B ∧ C ∧ ¬A)⌝

⇔ ⟨ (LP-7), (LP-8) ⟩
⌞(A ∧ B) ∨ (A ∧ B ∧ C)⌟ ∨ ⌞(¬A ∧ C) ∨ (¬A ∧ C ∧ B)⌟

⇔ ⟨ (LP-14) deux fois ⟩
⌜(A ∧ B)⌝ ∨ ⌜(¬A ∧ C)⌝

Ce style de preuve basé sur une suite d’équivalences est assez courant. Toutefois, nous allons
maintenant remonter aux racines des mathématiques et définir de manière formelle et générale ce
qu’est une preuve, et définir quelles sont les déductions valides que l’on peut faire dans une preuve
à l’aide de règles d’inférence.

1.4.2 Déduction

Définition 9 On dénote par A1, . . . ,An ⊢ B la relation de déduction entre les formules de la logique
propositionnelle (et aussi celle des prédicats du premier ordre). On dit alors que l’on peut déduire
la formule B, appelée la conclusion, à partir des formules A1, . . . ,An, appelées les hypothèses. □
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Par convention, nous utiliserons le symbole Γ pour désigner un ensemble de formules A1, . . . ,An.
Selon ce qui est le plus approprié dans un contexte donné, nous utiliserons A1, . . . ,An ⊢ B ou bien
Γ ⊢ B.

L’expression A1, . . . ,An ⊢ B signifie que si les formules A1, . . . ,An sont vraies, alors la formule
B est vraie aussi. L’expression A1, . . . ,An ⊢ B est aussi appelée un séquent; il s’agit d’une relation,
représentée par « ⊢ » , entre les formules; elle fut proposée par le logicien Gerhard Gentzen6. On
confond souvent la formule A ⇒ B avec le séquent A ⊢ B. Un séquent n’est pas une formule;
c’est une relation entre des formules (une relation de déduction). On peut calculer cette relation ⊢
à l’aide de règles d’inférence de la forme

A1 . . . Ak

B
où A1, . . . ,Ak sont appelées les prémisses et B la conclusion. Cette règle se lit comme suit: si
les hypothèses A1, . . . ,Ak sont vraies, alors on peut conclure que B est vraie. On peut composer
les règles pour obtenir une preuve. Une preuve est donc une suite de déductions obtenues par
application de règles d’inférence. Par exemple, les déductions suivantes

A1 A2

A5

A3 A4

A6

A7

permettent de conclure A1,A2,A3,A4 ⊢ A7, c’est-à-dire que A7 est vraie si A1,A2,A3,A4 sont
vraies.

La composition des règles forme une preuve, que l’on représente par un arbre. Les feuilles de
l’arbre, soient A1,A2,A3,A4, sont les hypothèses, alors que la racine est la conclusion, soit A7. Les
formules A5 et A6 sont des résultats intermédiaires dans la déduction de A7

Certaines preuves utilisent la notion de déchargement d’hypothèse. C’est typiquement le cas
pour la preuve d’une formule de la forme A ⇒ B. Pour faire cette preuve, on procède généralement
comme suit: on suppose que A est vraie et on déduit que B est vraie. Le sequent A ⊢ B résultant
de cette preuve permet de conclure, grâce à la table de vérité de «⇒ » , que le séquent ⊢ A ⇒ B est
aussi vrai; ce séquent ne contient aucune hypothèse. L’arbre de preuve final aura la forme suivante.

⌈A⌉[i]
...
B

[i]
A ⇒ B

On dit que l’hypothèse A est déchargée, et que le séquent représenté par cet arbre de preuve est
⊢ A ⇒ B (c’est-à-dire que A n’apparait pas dans les hypothèses du séquent). Par exemple, dans
l’arbre suivant,

A1 ⌈A2⌉[i]
A5

A3 A4

A6
[R][i]A7

6Gerhard Karl Erich Gentzen (24 novembre 1909 - 4 août 1945) est un mathématicien et logicien allemand. Il a
apporté des contributions majeures aux fondements des mathématiques, à la théorie de la preuve, notamment sur la
déduction naturelle et le calcul séquentiel. Il est mort de faim dans un camp de prisonniers soviétique à Prague en
1945, après avoir été interné en tant que ressortissant allemand après la Seconde Guerre mondiale.
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la conclusion de la déduction est A1,A3,A4 ⊢ A7, car A2 a été déchargée à la dernière étape à
cause de l’application de la règle d’inférence R. On notera une règle qui décharge une hypothèse de
la manière suivante:

⌈A⌉[i]
...
B

[i]
C

Les «
... » indiquent que A apparait comme une feuille de l’arbre (c’est-à-dire une hypothèse).

Pour illustrer ce concept, voici un théorème en algèbre linéaire que nous allons prouver en
utilisant tout d’abord une approche classique, et ensuite une approche très formelle.

Théorème 1 Si une matrice carrée E possède un inverse à gauche F et un inverse à droite G, alors
F = G. □

Dans ce théorème, on a les hypothèses suivantes:

1. A1 ≡ «E est une matrice carrée »

2. A2 ≡ « F est l’inverse à gauche de E »

3. A3 ≡ «G est l’inverse à droite de E »

La conclusion (le théorème) est que F = G. Lorsque ces trois hypothèses sont vraies, alors la
conclusion est vraie. Ce théorème peut s’énoncer de manière formelle comme suit. Tout d’abord,
il faut rappeler quelques définitions d’algèbre linéaire. Soit I la matrice identité. On dit qu’une
matrice F est un inverse à gauche d’une matrice E ssi F ∗E = I. De manière duale, on dit qu’une
matrice G est un inverse à droite d’une matrice E ssi E ∗ G = I. Finalement, une matrice M est
dite carrée, notée Carrée(M), ssi son nombre de lignes est égal à son nombre de colonnes. On peut
formaliser ce théorème de deux manières. Dans la première, on met les hypothèses à gauche du
symbole ⊢ :

A1,A2,A3 ⊢ F = G

c’est-à-dire,
Carrée(E), F ∗ E = I, E ∗G = I ⊢ F = G

Dans la deuxième forme, on met toutes les hypothèses dans la formule à prouver :

⊢ A1 ∧ A2 ∧ A3 ⇒ F = G

c’est-à-dire,
⊢ Carrée(E) ∧ F ∗ E = I ∧ E ∗G = I ⇒ F = G

Les deux formes sont équivalentes. Dans la deuxième forme, il n’y a aucune hypothèse; tout est
dans la formule à prouver (i.e., le théorème). La preuve de ce théorème est généralement écrite de
manière concise comme suit dans un bouquin d’algèbre linéaire.

F = F ∗ I = F ∗ (E ∗G) = (F ∗ E) ∗G = I ∗G = G

On peut justifier chaque étape de manière plus rigoureuse comme suit.

35



F
= ⟨ Loi de l’identité : pour toute matrice carrée M , on a M ∗ I = M ⟩

F ∗ I
= ⟨ hypothèse A3 ⟩

F ∗ (E ∗G)
= ⟨ Associativité du produit matriciel : M1 ∗ (M2 ∗M3) = (M1 ∗M2) ∗M3 ⟩

(F ∗ E) ∗G
= ⟨ hypothèse A2 ⟩

I ∗G
= ⟨ Loi de l’identité ⟩

G

Certaines lois de l’algèbre linéaire qui sont utilisées dans cette preuve n’ont pas été déclarées dans
le séquent initial. Pour être complètement formel, il faudrait les inclure aussi dans les hypothèses
du séquent. On a aussi utilisé de manière implicite les lois suivantes de l’égalité.

x = y y = z
(LE-1)x = z

x = y
(LE-2)

f(x) = f(y)

Voici un arbre de preuve très détaillé de cette preuve en utilisant la première forme.

∀M ·M = M ∗ I E∀ [M := F ]
F = F ∗ I

I = E ∗G (LE-2)
F ∗ I = F ∗ (E ∗G)

(LE-1)
F = F ∗ (E ∗G)

associativité ∗
F ∗ (E ∗G) = (F ∗ E) ∗G

tr. =
F = (F ∗ E) ∗G

Par manque d’espace, nous continuons cette preuve en prenant la conclusion de l’arbre précédent
et en la mettant comme hypothèse de l’arbre ci-dessous (en rouge).

...
F = (F ∗ E) ∗G

F ∗ E = I (LE-2)
(F ∗ E) ∗G = I ∗G

tr. =
F = I ∗G

∀M · I ∗M = M E∀ [M := G]
I ∗G = G tr. =

F = G

L’hypothèse « associativité ∗ » est l’application de la règle de l’associativité du produit ma-
triciel.

∀M1,M2,M3 · (M1 ∗M2) ∗M3 = M1 ∗ (M2 ∗M3) avec [M1 := F ][M2 := E][M3 := G]

L’hypothèse A1 indiquant que la matrice est carrée a été implicitement utilisée pour s’assurer que
le produit matriciel de chaque étape est bien défini, c’est-à-dire que les dimensions des matrices
sont compatibles pour le produit matriciel. Nous avons aussi utilisé la commutativité de l’égalité
de manière implicite. Dans cette preuve, il n’y a aucune hypothèse déchargée.

On constate que si on veut détailler une preuve a priori très simple et énumérer toutes les
hypothèses requises, il faut énumérer un nombre considérable de lois du domaine en question. Pour
simplifier et illustrer facilement le concept de preuve, nous allons utiliser seulement un ensemble
restreint de règles d’inférence de la logique propositionnelle, appelé la déduction naturelle, et prouver
des tautologies de la logique propositionnelle.

1.4.3 Règles d’inférence de la déduction naturelle

Voici un système de règles appelé déduction naturelle pour la logique propositionnelle. Nous utilis-
erons le logiciel Panda pour appliquer ces règles et faire des preuves. Panda offre une interface
graphique simple pour vous permettre de construire des preuves et les vérifier.
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A ∧ B
[E∧1]A

A ∧ B
[E∧2]B

A B
[I∧]A ∧ B

A ∨ B

⌈A⌉[i]
...
C

⌈B⌉[j]
...
C

[E∨][i,j]C
A

[I∨1]A ∨ B
B

[I∨2]A ∨ B

A A ⇒ B
[E⇒]

B

⌈A⌉[i]
...
B

[I⇒][i]A ⇒ B

A ⇔ B
[E⇔1]A ⇒ B

A ⇔ B
[E⇔2]B ⇒ A

A ⇒ B B ⇒ A
[I⇔]

A ⇔ B

¬¬A
[E¬]A

⌈A⌉[i]
...
⊥

[I¬][i]¬A
⊥

[E⊥]
A

A ¬A
[I⊥]

⊥

Le symbole «⊥ » est un synonyme de faux et il est utilisé par Panda. La règle ConDict est parfois
utilisée à la place de la règle I¬ chez certains auteurs. Elle est obtenue en combinant les règles I¬
et E¬.

⌈¬A⌉[i]
...
⊥

[ConDict][i]A
Voici quelques exemples de preuve, où p, q, r dénotent des formules quelconques.

1. ⊢ (p⇒ (q ⇒ r))⇒ ((p ∧ q)⇒ r)

⌈p ∧ q⌉[1]
[E∧1]p ⌈p⇒ (q ⇒ r)⌉[2]

[E⇒]q ⇒ r
⌈p ∧ q⌉[1]

[E∧2]q
[E⇒]r

[I⇒][1]

(p ∧ q)⇒ r
[I⇒][2]

(p⇒ (q ⇒ r))⇒ ((p ∧ q)⇒ r)

2. ⊢ (p⇒ (q ∧ r))⇒ ((p⇒ q) ∧ (p⇒ r))
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⌈p⇒ (q ∧ r)⌉[1] ⌈p⌉[2]
[E⇒]

q ∧ r
[E∧1]q
[I⇒][2]p⇒ q

⌈p⇒ (q ∧ r)⌉[1] ⌈p⌉[3]
[E⇒]

q ∧ r
[E∧2]r
[I⇒][3]p⇒ r
[I∧]

(p⇒ q) ∧ (p⇒ r)
[I⇒][1]

(p⇒ (q ∧ r))⇒ ((p⇒ q) ∧ (p⇒ r))

3. ⊢ ((p⇒ q) ∧ (p⇒ r))⇒ (p⇒ (q ∧ r))

⌈(p⇒ q) ∧ (p⇒ r)⌉[1]
[E∧1]p⇒ q ⌈p⌉[2]

[E⇒]q

⌈(p⇒ q) ∧ (p⇒ r)⌉[1]
[E∧2]p⇒ r ⌈p⌉[2]

[E⇒]r
[I∧]q ∧ r

[I⇒][2]

p⇒ (q ∧ r)
[I⇒][1]

((p⇒ q) ∧ (p⇒ r))⇒ (p⇒ (q ∧ r))

4. ⊢ p ∨ (q ∧ r)⇒ (p ∨ q) ∧ (p ∨ r)

⌈p ∨ (q ∧ r)⌉[1]

⌈p⌉[2]
[I∨1]p ∨ q

⌈p⌉[2]
[I∨1]p ∨ r
[I∧]

(p ∨ q) ∧ (p ∨ r)

⌈q ∧ r⌉[3]
[E∧1]q

[I∨2]p ∨ q

⌈q ∧ r⌉[3]
[E∧2]r

[I∨2]p ∨ r
[I∧]

(p ∨ q) ∧ (p ∨ r)
[E∨][2,3]

(p ∨ q) ∧ (p ∨ r)
[I⇒][1]

p ∨ (q ∧ r)⇒ (p ∨ q) ∧ (p ∨ r)

5. ⊢ ¬(p ∨ q)⇒ ¬p ∧ ¬q

⌈¬(p ∨ q)⌉[1]
⌈p⌉[2]

[I∨1]p ∨ q
[I⊥]

⊥
[I¬][2]¬p

⌈¬(p ∨ q)⌉[1]
⌈q⌉[3]

[I∨2]p ∨ q
[I⊥]

⊥
[I¬][3]¬q
[I∧]¬p ∧ ¬q

[I⇒][1]

¬(p ∨ q)⇒ ¬p ∧ ¬q

6. ⊢ p ∧ (q ∨ r)⇒ (p ∧ q) ∨ (p ∧ r)

⌈p ∧ (q ∨ r)⌉[1]
[E∧2]q ∨ r

⌈p ∧ (q ∨ r)⌉[1]
[E∧1]p ⌈q⌉[2]

[I∧]p ∧ q
[I∨1]

(p ∧ q) ∨ (p ∧ r)

⌈p ∧ (q ∨ r)⌉[1]
[E∧1]p ⌈r⌉[3]

[I∧]p ∧ r
[I∨2]

(p ∧ q) ∨ (p ∧ r)
[E∨][2,3]

(p ∧ q) ∨ (p ∧ r)
[I⇒][1]

p ∧ (q ∨ r)⇒ (p ∧ q) ∨ (p ∧ r)

7. ⊢ (p⇒ (q ⇒ r))⇒ (q ⇒ (p⇒ r))
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⌈p⇒ (q ⇒ r)⌉[1] ⌈p⌉[2]
[E⇒]q ⇒ r ⌈q⌉[3]

[E⇒]r
[I⇒][2]p⇒ r

[I⇒][3]

q ⇒ (p⇒ r)
[I⇒][1]

(p⇒ (q ⇒ r))⇒ (q ⇒ (p⇒ r))

8. ⊢ ¬(p ∧ q)⇒ ¬p ∨ ¬q

⌈¬p⌉[1]
[I∨1]¬p ∨ ¬q ⌈¬(¬p ∨ ¬q)⌉[2]

[I⊥]
⊥

[I¬][1]¬¬p
[E¬]p

⌈¬q⌉[3]
[I∨2]¬p ∨ ¬q ⌈¬(¬p ∨ ¬q)⌉[2]

[I⊥]
⊥

[I¬][3]¬¬q
[E¬]q

[I∧]p ∧ q ⌈¬(p ∧ q)⌉[4]
[I⊥]

⊥
[I¬][2]¬¬(¬p ∨ ¬q)
[E¬]¬p ∨ ¬q

[I⇒][4]

¬(p ∧ q)⇒ ¬p ∨ ¬q

9. ⊢ p ∧ (¬p ∨ q)⇒ p ∧ q

⌈p ∧ (¬p ∨ q)⌉[1]
[E∧2]¬p ∨ q

⌈p ∧ (¬p ∨ q)⌉[1]
[E∧1]p ⌈¬p⌉[2]

[I⊥]
⊥

[E⊥]
p ∧ q

⌈p ∧ (¬p ∨ q)⌉[1]
[E∧1]p ⌈q⌉[3]
p ∧ q

[E∨][2,3]p ∧ q
[I⇒][1]

p ∧ (¬p ∨ q)⇒ p ∧ q

10. ⊢ p ∨ (¬p ∧ q)⇒ p ∨ q

⌈p ∨ (¬p ∧ q⌉[1]
⌈p⌉[2]

[I∨1]p ∨ q

⌈¬p ∧ q⌉[3]
[E∧2]q

[I∨2]p ∨ q
[E∨][2,3]p ∨ q

[I⇒][1]

p ∨ (¬p ∧ q)⇒ p ∨ q

1.4.4 Cohérence, conséquence et complétude

Définition 10 Une valuation est une affectation de valeurs à des variables propositionnelles; elle
est notée [X1 := v1, . . . , Xn := vn], où vi ∈ {0, 1}. Certains auteurs utilisent le terme interprétation
comme synonyme de valuation. La valeur de vérité d’une formule propositionnelle A pour une
valuation V est notée AV . Cette valeur de vérité est calculée en remplaçant les variables de la
formule par leur valeur donnée par la valuation, et en calculant le résultant à l’aide des tables de
vérité. □
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Exemple 1 Par exemple, la valeur de vérité de la formule X1 ∧ ¬X2 sous la valuation [X1 :=
1, X2 := 0], notée (X1 ∧ ¬X2)[X1 := 1, X2 := 0], est 1. On peut la calculer ainsi à l’aide des tables
de vérité.

(X1 ∧ ¬X2)[X1 := 1, X2 := 0]
= ⟨ substitution des variables par leur valeur ⟩

1 ∧ ¬0
= ⟨ calcul de ¬0 = 1 ⟩

1 ∧ 1
= ⟨ calcul de 1 ∧ 1 = 1 ⟩

1

□

Définition 11 On dit qu’une valuation V satisfait une formule A, notée V |= A, ssi AV = 1.
Lorsque V |= A, on dit que V est un modèle de A, et que A est satisfaisable. Une formule A est
dite valide, notée |= A, ssi toute valuation V est un modèle de A. Une tautologie est donc un
synonyme de formule valide. Soit Γ = {A1, . . . ,An} un ensemble de formules propositionnelles et
V une valuation; on dit que V est un modèle de Γ, noté V |= Γ, ssi V est un modèle pour chaque
formule de Γ. □

Dans l’exemple 1, la valuation [X1 := 1, X2 := 0] est un modèle de la formule (X1 ∧ ¬X2)
On utilise la notation {e1, . . . , en} pour dénoter un ensemble formé des éléments e1, . . . , en. La

notion d’ensemble sera définie formellement plus tard dans le cours.

Définition 12 Un ensemble de formules propositionnelles Γ est dit cohérent ssi il existe un modèle
V pour Γ. □

Par exemple, les trois formules suivantes ne sont pas tautologiquement cohérente.

aLaGrippe⇒ faitDeLaFièvre (1.25)

aLaGrippe (1.26)

¬faitDeLaFièvre (1.27)

Si quelqu’un affirme que ces trois formules sont vraies, alors on peut dire qu’il est incohérent, car
il n’existe pas de valuation permettant de satisfaire les trois formules en même temps. La seule
valuation pouvant satisfaire la formule (1.26) contient aLaGrippe := 1. La seule valuation pouvant
satisfaire la formule (1.27) contient faitDeLaFièvre := 0. La valuation

[aLaGrippe := 1, faitDeLaFièvre := 0]

ne satisfait pas la formule (1.25). On peut donc systématiquement vérifier si un discours ou un
document de spécification est cohérent en calculant toutes les valuations possibles. Il peut exister
plusieurs valuations satisfaisant l’ensemble des formules considérées; l’important est qu’il en existe
au moins une.

Définition 13 On dit que B est une conséquence logique de Γ, notée Γ ( B, ssi tout modèle de Γ
est aussi un modèle de B. □
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La relation de conséquence logique « ( » est donc calculée avec les tables de vérité des opérateurs
logiques, alors de la relation de déduction « ⊢ » est calculée avec les règles d’inférence. Si une
formule comprend un grand nombre de variables, utiliser les règles d’inférence est beaucoup plus
concis (mais pas automatique), car la longueur d’une table de vérité d’une formule augmente de façon
exponentielle avec le nombre de variables. Si une formule de logique du premier ordre comprend
une variable x représentant un nombre naturel, alors il devient impossible de calculer la table
de vérité d’une formule, car le nombre de valeurs possibles pour x est infini. C’est pourquoi on
utilise les règles d’inférence en mathématique pour prouver des théorèmes, mais ce n’est pas un
processus automatique. Le calcul des tables de vérité pour une formule propositionnelle peut être
entièrement automatique, mais cela prend un temps exponentiel en fonction du nombre de variables
propositionnelles.

Exemple 2 Dans le tableau ci-dessous, on montre que la formule X3 est une conséquence logique
des formules X1 ∧X2 et (X1 ∧X2)⇒ X3, c’est-à-dire

{ X1 ∧X2, (X1 ∧X2)⇒ X3 } ( X3

.

no X1 X2 X3 X1 ∧X2 (X1 ∧X2)⇒ X3 X3

1 0 0 0 0 1 0
2 0 0 1 0 1 1
3 0 1 0 0 1 0
4 0 1 1 0 1 1
5 1 0 0 0 1 0
6 1 0 1 0 1 1
7 1 1 0 1 0 0
8 1 1 1 1 1 1

Il n’y qu’un seul modèle des formules à gauche du symbole ( , soit la ligne 8. Il faut donc vérifier
que la formule X3 est vraie aussi pour ce modèle, et c’est bien le cas. □

Exemple 3 Dans le tableau ci-dessous, on montre que la formule X3 n’est pas une conséquence
logique des formules X1 ∨X2 et (X1 ∧X2)⇒ X3.

{ X1 ∨X2, (X1 ∧X2)⇒ X3 } (̸ X3

.

no X1 X2 X3 X1 ∨X2 (X1 ∧X2)⇒ X3 X3

1 0 0 0 0 1 0
2 0 0 1 0 1 1
3 0 1 0 1 1 0
4 0 1 1 1 1 1
5 1 0 0 1 1 0
6 1 0 1 1 1 1
7 1 1 0 1 0 0
8 1 1 1 1 1 1

Les formules à gauche du symbole ̸( ont cinq modèles, soit les lignes 3, 4, 5, 6 et 8. Il faut donc
vérifier que la formule X3 est vraie pour chacun de ces modèles, et ce n’est pas le cas pour les lignes
3 et 5. □
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Une autre façon de définir la cohérence est d’utiliser la relation déduction. On dit qu’un ensemble
de formule A1, . . . ,An est cohérent ssi il n’est pas possible d’obtenir A1, . . . ,An ⊢ B et A1, . . . ,An ⊢
¬B. On peut montrer que les formules (1.25), (1.26), (1.27) sont incohérentes, à l’aide de la déduction
suivante.

aLaGrippe aLaGrippe⇒ faitDeLaFièvre
[E⇒]

faitDeLaFièvre

On peut donc déduire la formule faitDeLaFièvre, ce qui contredit la formule (1.27). Cette approche
est moins facile à automatiser. La plupart des approches de vérification de la cohérence utilisent la
recherche d’un modèle à l’aide des formes normales, qui sont l’objet de la prochaine section.

Les règles d’inférence de la déduction naturelle sont dites cohérentes, car si Γ ⊢ B, alors Γ ( B,
c’est-à-dire tout théorème B est aussi une conséquence logique. Ces règles sont aussi dites complètes,
car si Γ ( B, alors Γ ⊢ B, c’est-à-dire toute conséquence logique est aussi un théorème.

Théorème 2 Γ ( B ssi Γ ⊢ B. □

Ainsi, on peut calculer si une formule est vraie en utilisant soit les tables de vérité, soit les règles
d’inférences. C’est une propriété fondamentale de la logique. Notons que ⊢ et ( sont deux relations
distinctes sur les formules propositionnelles; la première est calculée avec les règles d’inférence; la
seconde est calculée avec les tables de vérités, c’est-à-dire sur les modèles. Pour calculer Γ ( B en
utilisant la définition 13, il faut évaluer 2n valuations, où n est le nombre de variables proposition-
nelles apparaissant dans les formules de Γ et B.

Les outils utilisent de vérification en logique plutôt le théorème suivant, qui réduit le problème
de conséquence logique au problème de satisfaction d’un ensemble de formules.

Théorème 3 Γ ( B ssi l’ensemble des formules Γ ∪ {¬B} est incohérent. □

Le symbole ∪ est l’opérateur usuel d’union sur les ensembles. Finalement, la satisfaction d’un
ensemble de formules peut être réduit au problème de la satisfaction d’une formule, qui est NP-
complet.

Théorème 4 Un ensemble de formules {A1, . . . ,An} est cohérent ssi la formule A1 ∧ . . . ∧ An est
satisfaisable. □

Le théorème 2 est un théorème dit de complétude en logique. Cette propriété de complétude
est très importante. Quand on définit un ensemble de règles d’inférence pour faire de la preuve,
on cherche souvent a démontrer que le système d’inférence est complet, c’est-à-dire qu’il permet de
démontrer tout ce qu’on voudrait pouvoir démontrer, comme dans le théorème 2. Une théorie peut
être complète sans pour autant être décidable; c’est le cas de l’arithmétique avec l’addition et la
multiplication. Gödel a démontré en 1929 que la logique du premier ordre est complète, c’est-à-dire
que pour un ensemble de formules Γ, une formule est vraie dans tous les modèles de Γ ssi il existe
une preuve de cette formule. Un ensemble de règles d’inférence est dit cohérent si tout ce qu’il
permet de déduire est vrai dans tous les modèles.

1.4.5 Utilisation de la logique

1.4.5.1 Vérification de systèmes

Les logiciels sont généralement spécifiés avec la logique du premier ordre, qui est l’objet de la
prochaine section. Toute formule représentant la correction d’un logiciel peut être traduite en une
formule propositionnelle (souvent gigantesque). Quand on désire faire la preuve de correction d’un
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logiciel, on a deux options. Soit on utilise les algorithmes de satisfaction d’une formule proposi-
tionnelle (c’est-à-dire, la relation « |= » ) si le nombre de variables est relativement petit (quelques
dizaines de million de variables!). Si le nombre de variables est trop grand, on utilisera les règles
d’inférence et la déduction (donc, la relation « ⊢ » ), car le calcul d’une preuve est indépendant
du nombre de variables propositionnelles. Malheureusement, la plupart des logiciels nécessitent un
nombre astronomique (très très grand!) de variables propositionnelles et la relation |= n’est pas
calculable en un temps et un espace mémoire acceptables. D’autre part, Gödel7 a démontré que
l’arithmétique est indécidable, au sens où il existe des formules qui ne peuvent être ni prouvées ni
réfutées (cf, le théorème d’incomplétude de l’arithmétique de 1931). En 1936, Turing et Church ont
montré qu’il existe des problèmes indécidables, c’est-à-dire qu’il n’existe pas d’algorithme pouvant
déterminer s’il existe une preuve d’un séquent Γ ⊢ B pour n’importe quel Γ et B. C’est pour ce
problème que Turing a défini le concept de machine de Turing, le premier modèle mathématique
abstrait d’un ordinateur, afin de définir formellement la notion d’algorithme. Sa preuve montre
qu’il n’existe pas de machine qui peut lire la description d’une machine et déterminer si elle termine
(i.e., communément appelé le problème de l’arrêt). À la même époque, Church a défini le λ-calcul
pour montrer qu’il n’existe pas de fonction récursive permettant de dire si deux λ-expressions sont
équivalentes. Le λ-calcul constitue la deuxième définition de la notion d’algorithme.

Les théorèmes de Gödel, Church et Turing établissent les limites de la déduction en logique. Bien
sûr, cela n’empêche pas de faire de la preuve automatisée. En pratique, les prouveurs automatisés
arrivent très souvent à trouver une preuve pour les séquents; ils utilisent des heuristiques pour le
faire, ou bien ils sont guidés par un humain dans la recherche d’une preuve. Si on n’arrive pas
à trouver une preuve d’un séquent Γ ⊢ B, on peut alors essayer de prouver Γ ⊢ ¬B, ou bien de
satisfaire Γ ∪ ¬B. Si on trouve un modèle pour Γ ∪ ¬B, alors on sait que Γ ⊢ B est faux, donc que
Γ ⊢ ¬B est vrai. Bien sûr, il faut aussi s’assurer que Γ est cohérent, car si Γ est incohérent, alors
on peut prouver à la fois Γ ⊢ ¬B et Γ ⊢ B. Si Γ est incohérent, cela signifie que la spécification du
logiciel est mal construite.

1.4.5.2 Théorie et modélisation

En mathématique, on cherche généralement à trouver un ensemble minimal de formules Γ à partir
desquels on peut prouver les théorèmes intéressants (pertinents) d’un domaine. On appelle alors
les éléments de Γ des axiomes, et l’ensemble des théorèmes que l’on peut déduire à partir de ces
axiomes est appelée une théorie. Par exemple, on a la théorie des nombres naturels, des nombre
entiers, etc. L’algèbre est une discipline des mathématiques qui s’intéresse à l’étude de théories (ex:
l’algèbre linéaire s’intéresse aux résultats que l’on peut prouver sur les matrices à partir d’un nombre
restreint d’axiomes). L’algèbre s’intéresse aussi à généraliser les propriétés d’un grand nombre de
théories particulières; par exemple, la théorie des monoïdes s’intéresse à prouver des théorèmes pour
n’importe quel ensemble d’objets où on a une opération associative (ex: + sur les nombres naturels)
et un élément neutre (ex: 0 dans les nombres naturels). Cela donne les deux axiomes suivants:

x+ (y + z) = (x+ y) + z associativité
x+ 0 = x élément neutre

Les nombres naturels avec + et 0 sont un monoïde. Les nombres naturels avec ∗ et 1 forment aussi
un monoïde. Les matrices avec la multiplication et la matrice identité forment aussi un monoïde.
Tout théorème prouvé à partir de ces deux axiomes sera un théorème dans n’importe quel monoïde.

7Kurt Gödel, né le 28 avril 1906 en Autriche et mort le 14 janvier 1978 à Princeton (New Jersey), est un logicien
et mathématicien autrichien naturalisé américain.
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L’algèbre est à l’origine de la création du concept de classe en programmation orientée objets.
C’est ce qui inspira Ole-Johan Dahl8 et Kristen Nygaard9 pour définir le premier langage de pro-
grammation orienté objets, appelé Simula, dans les années 1960. Ils reçurent le prix Alan Turing
en 2001 pour cette contribution. Les mathématiques sont une grande source d’inspiration pour
plusieurs concepts fondamentaux en informatique. Notons qu’il fallut plus de 30 ans avant que la
programmation orientée objets deviennent une pratique courante en informatique. Alan Kay10, qui
travailla au centre de recherche de Xerox à Palo Alto en Californie, et ensuite chez Apple, développa
le langage Smalltalk, inspiré de Simula, qui fut l’un des premiers langage orienté objets largement
utilisé et popularisé par le MacIntosh d’Apple dans les années 1980. Il est aussi l’un des concep-
teurs de la notion d’interface graphique pour interagir avec un ordinateur; avant, les interactions
se faisaient en ligne de commande sur un terminal. Il reçut le prix Alan Turing en 2003 pour ces
contributions.

Pour la vérification de logiciels critiques, on utilise des logiciels, appelés prouveurs de théorèmes,
pour vérifier la correction des systèmes (ex: COQ11, HOL12, Isabelle13, PVS14, Why315, Z316). Ces
prouveurs permettent de définir des théories et des règles d’inférences. Le langage B, qui est utilisé
dans ce cours, est supporté par plusieurs de ces prouveurs.

1.5 Preuve en logique du premier ordre

1.5.1 Règles d’inférence

Les règles d’inférence de la logique propositionnelle s’appliquent aussi à la logique du premier or-
dre, car elle contient aussi les connecteurs propositionnels. Il reste à ajouter des règles pour les
quantificateurs existentiel (∃) et universel (∀).

∀x · A
[E∀]A[x := t]

A
[I∀] où x n’est pas libre dans les hypothèses de A

∀x · A

A[x := t]
[I∃]∃x · A

∃x · A

⌈A⌉[i]
...
B

[E∃]
[i] où x n’est pas libre dans B ni

dans les hypothèses de BB

1.6 Formes normales

Plusieurs travaux en logique, comme l’analyse de complexité algorithmique de la satisfaction d’une
formule et la preuve automatisée de théorèmes, nécessitent de transformer une formule en une autre

8Ole-Johan Dahl (12 octobre 1931 – 29 juin 2002) est un informaticien norvégien.
9Kristen Nygaard (27 août 1926 - 10 août 2002) était un mathématicien et informaticien norvégien.

10Alan C. Kay (17 mai 1940), est un informaticien américain.
11coq.inria.fr
12hol-theorem-prover.org
13isabelle.in.tum.de
14pvs.csl.sri.com
15why3.lri.fr
16z3prover.github.io
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Figure 1.4: La représentation sous forme d’arbre de la FNC

formule équivalente, mais sous une forme appelée « normale » . Il y a deux principales formes
normales, soit conjonctive et disjonctive.

Définition 14 Une formule est dite en forme normale conjonctive (FNC) ssi elle est de la forme

(A1 ∨ . . . ∨ Ak) ∧ . . . ∧ (Ak′ ∨ . . . ∨ An)

où chaque formule constituante Ai est soit une variable propositionnelle (Xi), soit la négation d’une
variable propositionnelle (¬Xi). □

Ainsi, une formule en FNC est une « conjonction de disjonctions » , et les éléments des disjonctions
sont des variables ou des négation de variables. Puisque les connecteurs «∧ » et «∨ » sont associat-
ifs et commutatifs, il n’est pas nécessaire de parenthéser la conjonction principale et les disjonctions
à l’intérieur de la conjonction principale. La figure 1.4 illustre la forme générale d’une FNC. On y
représente la conjonction avec un seul opérateur, et chaque disjonction est aussi représentée par un
seul opérateur.

Exemple 4 Les formules suivantes sont en FNC

(X1 ∨ ¬X2) ∧ (X1 ∨ X4) (1.28)

(X1 ∨ ¬X2) ∧ ¬X3 ∧ (X1 ∨ X4 ∨ X5) (1.29)

X1 ∨ ¬X3 (1.30)

X1 ∧ ¬X3 (1.31)

X1 (1.32)

¬X1 (1.33)

La formule (1.29) comporte une particularité, car elle contient une disjonction (¬X3) de longueur 1,
c’est-à-dire que cette disjonction est formée d’une seule formule, donc le connecteur «∨ » n’a pas
besoin d’y apparaitre. La figure 1.5 représente cette formule sous forme d’un arbre, en faisant
apparaitre le connecteur «∨ » pour cette disjonction de longueur 1. La version textuelle de cette
formule omet le connecteur «∨ » , afin qu’elle soit syntaxiquement correcte. La formule (1.30) est
aussi en FNC, même si elle ne contient pas de conjonction. Dans ce cas, on considère qu’il s’agit
d’une conjonction de longueur 1, c’est-à-dire que la conjonction ne contient qu’une seule formule, et
donc le connecteur «∧ » n’a pas besoin d’y apparaitre. On notera plus tard que cette formule est
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Figure 1.5: La représentation sous forme d’arbre de la formule (1.29), qui est en FNC

aussi en forme normale disjonctive. La formule (1.31) est en FNC : toutes ses disjonctions sont de
longueur 1; elle ne contient donc pas de connecteurs de disjonction. Finalement, la formule (1.32)
est une conjonction de longueur 1, dont la seule disjonction est aussi de longueur 1. Idem pour la
formule (1.33).

Les formules suivantes ne sont pas en FNC. Les parties qui font en sorte que la définition est
violée sont en rouge.

(X1 ∨ X4) ∧ ¬(X2 ∨ ¬X3) (1.34)

X1 ∨ (X2 ∧ ¬X3) (1.35)

X1 ∧ (X2 ∨ (X3 ∧ X4)) (1.36)

La formule (1.34) n’est pas en FNC, car la négation s’applique à une formule; elle ne peut s’appliquer
qu’à une variable. La formule (1.35) n’est pas en FNC, car la disjonction s’applique à une conjonc-
tion; elle ne peut s’appliquer qu’à une variable ou à la négation d’une variable. Idem pour la formule
(1.36).

□

Définition 15 Une formule est dite en forme normale disjonctive (FND) ssi elle est de la forme

(A1 ∧ . . . ∧ Ak) ∨ . . . ∨ (Ak′ ∧ . . . ∧ An)

où chaque formule constituante Ai est soit une variable propositionnelle (Xi), soit la négation d’une
variable propositionnelle (¬Xi). □

Exemple 5 Les formules suivantes sont en FND

(X1 ∧ ¬X2) ∨ ¬X3 ∨ (X1 ∧ X4 ∧ X5)

X1 ∨ ¬X3

X1 ∧ ¬X3

X1

¬X1

Les formules suivantes ne sont pas en FND. Les parties qui font en sorte que la définition est violée
sont en rouge.

(X1 ∧ X4) ∨ ¬(X2 ∧ ¬X3)
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X1 ∧ (X2 ∨ ¬X3)

X1 ∨ (X2 ∧ (X3 ∨ X4))

□

Toute formule propositionnelle peut être transformée en une formule équivalente en FNC à l’aide
des lois (LP-12), (LP-17), (LP-18), (LP-21), (LP-22) et (LP-40), ou en FND, avec les mêmes lois,
mais en utilisant (LP-11) au lieu de (LP-12). Ces lois permettent de ré-écrire une formule pour
déplacer les connecteurs vers l’intérieur de la formule et remplacer les connecteurs ⇔ et ⇒.

Voici un exemple de transformation d’une formule en FNC.

¬(X1 ∨ ¬X2) ∨X3

⇔ ⟨ Déplacement de la négation vers l’intérieur (LP-18) ⟩
(¬X1 ∧ ¬¬X2) ∨X3

⇔ ⟨ Élimination de la double négation (LP-21) ⟩
(¬X1 ∧X2) ∨X3

⇔ ⟨ Commutativité (afin d’appliquer (LP-10) à l’étape suivante) (LP-8) ⟩
X3 ∨ (¬X1 ∧X2)

⇔ ⟨ Déplacement de la disjonction vers l’intérieur (LP-10) ⟩
(X3 ∨ ¬X1) ∧ (X3 ∨X2)

La FND est calculée de manière similaire.

¬(X1 ∨ ¬X2) ∨X3

⇔ ⟨ Déplacement de la négation vers l’intérieur (LP-18) ⟩
(¬X1 ∧ ¬¬X2) ∨X3

⇔ ⟨ Élimination de la double négation (LP-21) ⟩
(¬X1 ∧X2) ∨X3
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1.7 Exercices

1. Prouvez les formules suivantes en utilisant seulement les règles d’inférence de la déduction
naturelle. Indiquez pour chaque étape de preuve, la règle utilisée et les hypothèses déchargées
(s’il y a déchargement avec cette règle). Toutes les hypothèses doivent être déchargées, puisque
chaque séquent ci-dessous ne contient aucune hypothèse (c’est-à-dire, chaque séquent est de
la forme ⊢ A).

(a) ⊢ (p ∨ q) ∧ (p ∨ r)⇒ p ∨ (q ∧ r)

Solution:

((p∨q)∧(p∨r))(1)

(p∨q)
(E∧)

p(2)

(p∨(q∧r))
(I∨)

((p∨q)∧(p∨r))(1)

(p∨r)
(E∧)

p(4)

(p∨(q∧r))
(I∨)

q(3) r(5)

(q∧r)
(I∧)

(p∨(q∧r))
(I∨)

(p∨(q∧r))
(E∨)(4)(5)

(p∨(q∧r))
(E∨)(2)(3)

(((p∨q)∧(p∨r))⇒(p∨(q∧r)))
(I⇒)(1)

(b) ⊢ (p ∧ q) ∨ (p ∧ r)⇒ p ∧ (q ∨ r)

Solution:

((p∧q)∨(p∧r))(1)
(p∧q)(2)

p (E∧)
(p∧r)(3)

p (E∧)

p (E∨)(2)(3)
((p∧q)∨(p∧r))(1)

(p∧q)(4)

q (E∧)

(q∨r)
(I∨)

(p∧r)(5)

r (E∧)

(q∨r)
(I∨)

(q∨r)
(E∨)(4)(5)

(p∧(q∨r))
(I∧)

(((p∧q)∨(p∧r))⇒(p∧(q∨r)))
(I⇒)(1)

(c) ⊢ p ∧ q ⇒ p ∧ (¬p ∨ q)

Solution:
(p∧q)(1)

p (E∧)

(p∧q)(1)

q (E∧)

(¬p∨q)
(I∨)

(p∧(¬p∨q))
(I∧)

((p∧q)⇒(p∧(¬p∨q)))
(I⇒)(1)

(d) ⊢ ¬¬p⇒ p

Solution:
¬¬p(1)

p (E¬)

(¬¬p⇒p)
(I⇒)(1)

(e) ⊢ p⇒ ¬¬p
Solution:

p(1) ¬p(2)

⊥ (I⊥)

¬¬p (I¬)(2)

(p⇒¬¬p)
(I⇒)(1)

(f) ⊢ (p⇒ q)⇒ (¬q ⇒ ¬p)
Solution:

(p⇒q)(1) p(3)

q (E⇒) ¬q(2)

⊥ (I⊥)

¬p (I¬)(3)

(¬q⇒¬p)
(I⇒)(2)

((p⇒q)⇒(¬q⇒¬p))
(I⇒)(1)

(g) ⊢ (¬q ⇒ ¬p)⇒ (p⇒ q)

Solution:
p(2) (¬q⇒¬p)(1) ¬q(3)

¬p (E⇒)

⊥ (I⊥)

¬¬q (I¬)(3)

q (E¬)

(p⇒q)
(I⇒)(2)

((¬q⇒¬p)⇒(p⇒q))
(I⇒)(1)

48



(h) ⊢ ¬p ∧ ¬q ⇒ ¬(p ∨ q)

Solution:

(p∨q)(2)
p(3) (¬p∧¬q)(1)

¬p (E∧)

⊥ (I⊥)
q(4)

(¬p∧¬q)(1)

¬q (E∧)

⊥ (I⊥)

⊥ (E∨)(3)(4)

¬(p∨q)
(I¬)(2)

((¬p∧¬q)⇒¬(p∨q))
(I⇒)(1)

(i) ⊢ ¬p ∨ ¬q ⇒ ¬(p ∧ q)

Solution:

(¬p∨¬q)(1)
(p∧q)(2)

p (E∧) ¬p(3)

⊥ (I⊥)

(p∧q)(2)

q (E∧) ¬q(4)

⊥ (I⊥)

⊥ (E∨)(3)(4)

¬(p∧q)
(I¬)(2)

((¬p∨¬q)⇒¬(p∧q))
(I⇒)(1)

2. Prouvez les formules suivantes avec les règles d’inférences de la déduction naturelle.

(a) ⊢ a ∨ ¬a (loi du tiers exclu, c’est-à-dire la loi LP-20)

Solution:
a(2)

(a∨¬a)
(I∨) ¬(a∨¬a)(1)

⊥ (I⊥)

¬a (I¬)(2)

(a∨¬a)
(I∨) ¬(a∨¬a)(1)

⊥ (I⊥)

¬¬(a∨¬a)
(I¬)(1)

(a∨¬a)
(E¬)

(b) ⊢ a ∨ b⇒ a ∨ (¬a ∧ b)

Solution:

(a∨b)(1) a(2)

(a∨(¬a∧b))
(I∨)

b(3) ¬a(5)

(¬a∧b)
(I∧)

(a∨(¬a∧b))
(I∨) ¬(a∨(¬a∧b))(4)

⊥ (I⊥)

¬¬a (I¬)(5)
a (E¬)

(a∨(¬a∧b))
(I∨) ¬(a∨(¬a∧b))(4)

⊥ (I⊥)

¬¬(a∨(¬a∧b))
(I¬)(4)

(a∨(¬a∧b))
(E¬)

(a∨(¬a∧b))
(E∨)(2)(3)

((a∨b)→(a∨(¬a∧b)))
(I→)(1)

(c) ⊢ (a⇒ b)⇔ (¬a ∨ b)

Solution:

(a→b)(1) a(3)

b
(E→)

(¬a∨b)
(I∨) ¬(¬a∨b)(2)

⊥ (I⊥)

¬a (I¬)(3)

(¬a∨b)
(I∨) ¬(¬a∨b)(2)

⊥ (I⊥)

¬¬(¬a∨b)
(I¬)(2)

(¬a∨b)
(E¬)

((a→b)→(¬a∨b))
(I→)(1)

(¬a∨b)(4)
a(5) ¬a(6)

⊥ (I⊥)

b
(E⊥) b(7)

b
(E∨)(6)(7)

(a→b)
(I→)(5)

((¬a∨b)→(a→b))
(I→)(4)

((a→b)↔(¬a∨b))
(I∧)

La branche gauche de la preuve est la plus difficile. On se retrouve avec une hypothèse
a⇒ b. Pour l’utiliser, il faut avoir a en hypothèse. On serait tenté de prouver ¬a ∨ b à
partir de ¬a et monter a en hypothèse à l’aide d’une preuve par contradiction, mais cela
ne suffit pas pour obtenir la contradiction. Il faut plutôt prouver ¬a∨b par contradiction,
et monter ensuite a en hypothèse à l’aide d’une deuxième preuve par contradiction.
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3. Prouvez les lois (LP-23) à (LP-43) en utilisant le style équationnel et les lois (LP-1) à (LP-22).
Il n’est pas nécessaire de toutes les prouver pour se préparer à l’examen. Plusieurs ont déjà
été prouvées en exercices ou en devoir.

4. Transformez les formules suivantes en FNC et en FND.

(a) ¬(X1⇒¬(X2 ∨ X3))

(b) ¬(X1 ∨ ¬((X2 ∧ X3)⇒¬X4))

5. Déterminez si X1⇒¬(X2 ∨ X3), X1 ∧ X2 ( ¬X3

6. Traduisez les phrases données dans les exemples disponibles dans le répertoire ci-dessous en
logique avec le langage de Tarski UdeS.

https://github.com/MarcFrappierUdeS/mat115/tree/main/exercices/chap1/Tarski
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Chapitre 2

Ensemble, relation et fonction

Les mathématiques discrètes comprennent un éventail assez large d’objets mathématiques. Dans le
cadre de ce cours, nous nous limiterons aux fondements des mathématiques discrètes, soit la théorie
des ensembles, les relations, les fonctions et les suites. Les structures de données et les bases de
données relationnelles sont inspirées des mathématiques discrètes. Peter Codd1 se mérita le prix
Alan Turing en 1981 pour sa contribution à la définition des bases de données relationnelles fondées
sur les relations (i.e., l’algèbre des relations). Les ensembles, les relations et les fonctions constituent
aussi les fondements des langages de spécification formel de systèmes comme ASM, Alloy, B, TLA,
VDM et Z. Ces langages sont utilisés pour concevoir des systèmes critiques et prouver leur correction
et leur sûreté de fonctionnement.

Nous utilisons le langage de spécification B [1] pour illustrer les mathématiques discrètes, ainsi
que l’outil ProB [8, 9], conçu par Michael Leuschel. Consultez le fichier

http://info.usherbrooke.ca/mfrappier/mat115/ref/resume-ens-rel-fonction-abrial.pdf

pour des exemples des opérateurs du langage B. Ce document a été produit par Jean-Raymond
Abrial2, auteur de la méthode B.

1Edgar Frank « Ted » Codd (23 août 1923 - 18 avril 2003) est un informaticien britannique. Il est considéré
comme l’inventeur du modèle relationnel en base de données durant son séjour chez IBM dans les années 1960. Il reçu
le prix Alan Turing en 1981 pour cette contribution. Il participa à la définition de plusieurs formes normales, qui sont
utilisées comme critère de qualité et de conception pour un modèle relationnel de données. IBM ne commercialisa
pas ses travaux immédiatement, préférant continuer d’exploiter son SGBD hiérarchique IMS, ce qui permit à Larry
Ellison de fonder la société Oracle en utilisant le résultat des travaux de Codd. Oracle connut un succès commercial
important grâce à son SGBD relationnel, qui supplanta les SGBD hiérarchiques comme IMS d’IBM.

2Jean-Raymond Abrial (1938) est un informaticien français, docteur honoris causa de l’Université de Sherbrooke,
diplômé de l’École Polytechnique en France et de l’Université de Stanford aux États-Unis. Il a débuté sa carrière
d’informaticien dans les années 60, en concevant l’un des tout premiers systèmes de gestion de bases de données de
type réseau, permettant aux développeurs d’applications de gestion de l’époque de faire abstraction de la complexité
de la représentation interne des données. Il participa aussi à la conception du langage de programmation Ada en
1978-79 au sein de l’équipe CII-Honeywell-Bull qui remporta le concours international organisé par le Ministère de
la défense américain. Il y fut responsable des aspects concurrentiels et notamment de la notion de rendez-vous, qui
est à la base de la programmation concurrente. Dès le début des années 70, il a amorcé ses travaux sur les modèles
sémantiques de données et sur la spécification formelle des systèmes, avec la méthode Z, la méthode B et finalement
Event-B, qui constituent sans aucun doute une des plus grandes contributions en génie logiciel. Il a réalisé le défi
colossal de mener à terme une idée, de son concept théorique initial jusqu’à son application industrielle à grande
échelle, une performance encore plus remarquable qu’il fut le premier à le faire au niveau des méthodes formelles,
plusieurs grands chercheurs s’y étant attaqué sans succès auparavant.
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2.1 Conventions

Nous utilisons les conventions suivantes

Symbole Description
X variable propositionnelle
A,B, C formule
t, u, v, w terme
x variable (terme)
x⃗ x1, . . . , xn (liste de variables)
S, T, U ensemble (terme)
f, g, h fonction (terme)
r relation (terme)
i, j, k,m, n nombre (terme)
s suite

2.2 La logique du premier ordre en B

Le langage B a une syntaxe légèrement différente de la syntaxe traditionnelle. Voici la syntaxe des
formules en B.

Syntaxe
Description Expression ASCII B Notes
négation ¬A not (A)
conjonction A ∧ B A & B
disjonction A ∨ B A or B
implication A⇒B A => B
équivalence A⇔B A <=> B
pour tout ∀(x⃗) · (A⇒ C) !(x⃗).(A => B) A doit typer chaque xi
il existe ∃(x⃗) · (A ∧ B) #(x⃗) · (A ∧ B) A doit typer chaque xi
égalité t1 = t2 t1 = t2
inégalité t1 ̸= t2 t1 /= t2

Table 2.1: Syntaxe des formules de logique du premier ordre en B

2.3 Les ensembles

Un ensemble est une collection d’objets, sans ordre particulier. Les ensembles servent, entre autres,
à donner un type aux variables d’une formule de logique du premier ordre. Il existe plusieurs
méthodes pour définir un ensemble; nous en utiliserons deux, soit la définition par extension (aussi
appelée par énumération) et la définition par compréhension.

2.3.1 Définition par extension

La définition par extension consiste à énumérer les éléments de l’ensemble:

{e1, . . . , en}
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où e1, . . . , en représentent les éléments de l’ensemble. Par exemple, voici l’ensemble CouleurPrimaire,
qui contient 3 couleurs.

CouleurPrimaire = {rouge, vert, bleu}

Vu que l’ordre d’énumération des éléments n’a pas d’importance, alors l’ensemble

CouleurPrimaire2 = {vert, rouge, bleu}

est égal à l’ensemble CouleurPrimaire, i.e.,

CouleurPrimaire2 = CouleurPrimaire

Un ensemble ne peut pas contenir de répétitions pour un élément; par exemple, on a

{a, a, b} = {a, b}

Un cas particulier d’ensemble est l’ensemble vide, noté {}, ou bien ∅; il ne contient aucun élément.
Si un ensemble comprend un grand nombre d’éléments, ou bien une infinité d’éléments, on utilise
parfois les « . . . » :

N = {0, 1, 2, . . .}

MultipleTrois = {0, 3, 6, 9, . . .}

Toutefois, cela n’est pas formel. Pour obtenir une définition formelle, on utilise alors la deuxième
méthode, c’est-à-dire par compréhension.

2.3.2 Définition par compréhension

Soit x une variable et A une formule de logique du premier ordre; la forme générale d’une définition
d’un ensemble par compréhension est la suivante:

{x | A}

La variable x représente un élément quelconque de l’ensemble et la formule A représente le critère
d’appartenance d’un élément x à l’ensemble. La barre verticale « | » sert simplement de séparateur
dans la définition. On peut choisir la variable que l’on veut pour définir un ensemble par com-
préhension. Cette variable devient liée par cette définition, un peu comme la variable x est liée dans
une formule ∀x · A. Par exemple, l’ensemble suivant contient tous les multiples de 3:

MultipleTrois = {x | x ∈ N ∧ ∃y · y ∈ N ∧ x = y ∗ 3}

On peut lire cette définition comme suit.

Un multiple de 3, représenté ici par la variable x, est un nombre naturel (x ∈ N) tel
qu’il existe un nombre naturel y tel que x = y ∗ 3.

On suppose ici que la définition des nombres naturels N est déjà donnée. La définition de N n’est
pas si triviale à formuler. Elle n’utilise pas la notion de compréhension; elle est basée sur les axiomes
de Giuseppe Peano3, proposés en 1889! Un axiome est une formule que l’on suppose vraie, et qui
sert à définir une structure mathématique. Dans ce cours, nous n’aborderons pas la définition de N;

3Giuseppe Peano, (1858–1932) mathématicien et linguiste italien, pionnier de l’approche formaliste des mathé-
matiques, il développa, parallèlement à l’Allemand Richard Dedekind, une axiomatisation de l’arithmétique (1889),
incluant le concept d’induction mathématique
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nous supposerons qu’elle existe. La formulation de Zermelo4 est particulièrement simple et élégante:
il s’agit d’un emboitement d’ensemble vide, comme suit:

1. 0 = {}

2. 1 = {{}}

3. 2 = {{{}}}

4. . . .

La fonction successeur s(x) = x+ 1, est représentée comme suit:

s(x) = {x}

À partir de successeur, on peut définir l’addition, la multiplication, etc.

2.3.3 Appartenance

L’appartenance d’un élément e à un ensemble E est notée

e ∈ E

Par exemple, on a
rouge ∈ CouleurPrimaire

On note que e est un élément, et E est un ensemble. L’appartenance à un ensemble défini par
extension est définie comme suit:

y ∈ {e1, . . . , en} ⇔ y = e1 ∨ . . . ∨ y = en (2.1)

L’appartenance d’un élément à un ensemble défini par compréhension est définie comme suit.

y ∈ {x | A} ⇔ A[x := y] (2.2)

Pour vérifier qu’un nombre n appartient à MultipleTrois, il suffit de vérifier si n satisfait la formule
définissant MultipleTrois, c’est-à-dire vérifier A[x := n]. Voici le calcul pour n = 6.

6 ∈ MultipleTrois
⇔ ⟨ (2.2) ⟩

(x ∈ N ∧ ∃y · y ∈ N ∧ x = y ∗ 3)[x := 6]
⇔ ⟨ application de la substitution ⟩

6 ∈ N ∧ ∃y · y ∈ N ∧ 6 = y ∗ 3
⇐ ⟨ règle I∃ avec y := 2 ⟩

6 ∈ N ∧ ((y ∈ N ∧ 6 = y ∗ 3)[y := 2])
⇔ ⟨ application de la substitution ⟩

6 ∈ N ∧ 2 ∈ N ∧ 6 = 2 ∗ 3
⇐ ⟨ arithmétique ⟩

Lois de l’arithmétique

4Ernst Zermelo, (1871–1953) mathématicien allemand, qui s’est intéressé aux fondations de la théorie des ensembles
et fut un des précurseurs de la théorie des jeux, maintenant largement utilisée en finance, en économie et en intelligence
artificielle.
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Une définition par compréhension peut mener à une contradiction. Russell5 l’a illustré par la
définition suivante:

y = {x | x ̸∈ x}

On peut alors effectuer les déductions suivantes.

y ∈ y
⇔ ⟨ (2.2) ⟩

(x ̸∈ x)[x := y]
⇔ ⟨ application de la substitution ⟩

y ̸∈ y

On obtient donc y ∈ y⇔ y ̸∈ y, ce qui est une contradiction. De la même manière, « l’ensemble de
tous les ensembles » n’existe pas, car si on essaie de le définir, on obtient aussi une contradiction.

Pour éviter ces contradictions, on s’assure que chaque ensemble est défini à partir d’un ensemble
S qui est lui-même bien défini, comme par exemple N, ou bien un ensemble défini par énumération.
Pour éviter ces paradoxes, on utilise la forme générale suivante, où S est un ensemble bien défini.

E = {x | x ∈ S ∧ A}

De cette façon, l’ensemble est E est un sous-ensemble de l’ensemble bien défini S. Ce type de
définition ne peut mener à une contradiction comme celle illustrée par le paradoxe de Russell. Les
mécanismes utilisés pour produire des ensembles bien définis sont hors de la portée de ce cours; il
s’agit, entre autres, de la théorie des types.

2.3.4 Inclusion

On dit que qu’un ensemble E1 est un sous-ensemble de E2, noté E1 ⊆ E2, ssi tous les éléments de
E1 sont aussi des éléments de E2. Voici la définition formelle du prédicat ⊆.

E1 ⊆ E2 ⇔ ∀x · x ∈ E1⇒ x ∈ E2 (2.3)

Finalement, l’ensemble vide ne contient aucun élément, et il est donc inclus dans tous les en-
sembles. Soit S un ensemble.

x ∈ {} ⇔ faux (2.4)

Soit S un ensemble quelconque, on a donc, par (2.3) et (2.4):

{} ⊆ S (2.5)

Il arrive fréquemment que les étudiants confondent l’appartenance et l’inclusion. Dans une
appartenance x ∈ y, x est un élément et y un ensemble; dans une inclusion x ⊆ y, x et y sont des
ensembles. Le tableau 2.2 illustre la distinction entre les deux.

5Bertrand Russell (1872–1970) est un mathématicien, logicien, philosophe, épistémologue, homme politique et
moraliste britannique. Il est considéré, avec Frege, comme l’un des fondateurs de la logique contemporaine (avec son
livre Principia Mathematica). Il s’engage dans de nombreuses polémiques : il défend des idées proches du socialisme
de tendance libertaire et milite également contre toutes les formes de religion, considérant qu’elles sont des systèmes
de cruauté inspirés par la peur et l’ignorance. Il organise le tribunal Sartre-Russell contre les crimes commis pendant
la guerre du Viêt Nam. Son œuvre, qui comprend également des romans et des nouvelles, est couronnée par le prix
Nobel de littérature en 1950.
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Formule Valeur Commentaire
a ∈ {a, b} vrai
{a} ∈ {a, b} faux Formule mal typée; {a} n’est pas un élément
{a} ⊆ {a, b} vrai
a ⊆ {a, b} faux Formule mal typée; a n’est pas un ensemble
{} ∈ {a, b} faux Formule mal typée; {} n’est pas un élément
{} ⊆ {a, b} vrai

Table 2.2: Distinction entre appartenance et inclusion

2.3.5 Les ensembles en B

Le tableau 2.3 donne la syntaxe des principaux ensembles de base et des constructeurs d’ensemble
du langage B.

Syntaxe
Description Expression ASCII B Notes
ensemble vide {} {} x ∈ {}⇔ faux

extension (énumération) {t1, . . . , tn} { t1, . . . , tn }
x ∈ {t1, . . . , tn}
⇔
x = t1 ∨ . . . ∨ x = tn

compréhension {x | A} { x | A } y ∈ {x | A}⇔A[x := y]
A doit donner un type à x

naturels N NATURAL {0, 1, 2, . . .}
naturels non nuls N1 NATURAL1 {1, 2, . . .}
entiers Z INTEGER {. . . ,−2,−1, 0, 1, 2, . . .}
intervalle d’entiers i..j i..j {x | x ∈ Z ∧ i ≤ x ∧ x ≤ j},

où i ∈ Z et j ∈ Z
plus petit entier implé-
mentable

MININT MININT valeur dépend du processeur

plus grand entier im-
plémentable

MAXINT MAXINT valeur dépend du processeur

naturels implémentables NAT NAT 0..MAXINT
nat. impl. non nuls NAT1 NAT1 1..MAXINT
entiers implémentables INT INT MININT..MAXINT
chaîne de caractères STRING STRING
booléens BOOL BOOL {TRUE, FALSE}
bool bool(A) bool(A) retourne le booléen de A

i.e., sa valeur de vérité

Table 2.3: Constructeurs d’ensemble en B

Le tableau 2.4 résume les prédicats sur les ensembles en B.
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Syntaxe
Description Expression ASCII B Définition
appartenance x ∈ S x : S x est un élément de S

négation appartenance x ̸∈ S x /: S ¬(x ∈ S)

inclusion S ⊆ T S <: T ∀x · x ∈ S⇒ x ∈ T

négation inclusion S ̸⊆ T S /<: T ¬(S ⊆ T )

inclusion stricte S ⊂ T S <<: T S ⊆ T ∧ S ̸= T

négation inclusion stricte S ̸⊂ T S /<<: T ¬(S ⊂ T )

fini finite(S) N/A S est fini

Table 2.4: Prédicat sur les ensembles en B

2.3.6 Opérations sur les ensembles en B

Le tableau 2.5 donne les opérations sur les ensembles dans le langage B. Ces opérations sont illustrées
dans le document suivant:

http://info.usherbrooke.ca/mfrappier/mat115/ref/resume-ens-rel-fonction-abrial.pdf

Syntaxe
Description Expression ASCII B Définition
union S ∪ T S \/ T {x | x ∈ S ∨ x ∈ T}
intersection S ∩ T S /\ T {x | x ∈ S ∧ x ∈ T}
différence S − T S − T {x | x ∈ S ∧ x ̸∈ T}
ens. des parties
(ens. des sous-ens.)
(ens. de puissance)

P(S) POW(S) {T | T ⊆ S}

ens. des parties
non vides

P1(S) POW1(S) P(S)− {{}}
ens. des parties
finies

F(S) FIN(S) {T | T ⊆ S ∧ finite(T )}
ens. des parties
finies non vides

F1(S) FIN1(S) F(S)− {{}}
union généralisée union(S) union(S) {x | ∃T · T ∈ S ∧ x ∈ T}
intersection
généralisée inter(S) inter(S) {x | ∀T · T ∈ S⇒ x ∈ T}
union quantifiée

⋃
(x⃗).(A | S) UNION(x⃗).(A | S) {y | ∃(x⃗) · (A ∧ y ∈ S)}

intersection quantifiée
⋂
(x⃗).(A | S) INTER(x⃗).(A | S) {y | ∀(x⃗) · (A⇒ y ∈ S)}

cardinalité card(S) card(S) nb. d’éléments de S (si finite(S))

Table 2.5: Opérations sur les ensembles en B

Il arrive fréquemment que les étudiants confondent le typage des résultats de l’opérateur P(S),
qui retourne l’ensemble des sous-ensembles de S. Le tableau 2.6 illustre la distinction entre les deux.
Notons la valeur de l’expression suivante:

P({a, b}) = { {}, {a}, {b}, {a, b} } (2.6)
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Formule Valeur Commentaire
a ∈ P({a, b}) faux a n’est pas du bon type
a ⊆ P({a, b}) faux a n’est pas du bon type
{a} ∈ P({a, b}) vrai
{a} ⊆ P({a, b}) faux {a} n’est pas du bon type
{{a}} ⊆ P({a, b}) vrai
{} ∈ P({a, b}) vrai {} est bien un élément; voir 2.6
{} ⊆ P({a, b}) vrai {} est un sous-ensemble de n’importe quel autre ensemble

Table 2.6: Distinction entre appartenance et inclusion

2.4 Les relations

Soit S et T deux ensembles; soit x un élément de S et y un élément de T . On note par x 7→ y le couple
formé des éléments x et y; on appelle x un antécédent et y une image. Plusieurs auteurs utilisent
aussi la notation (x, y) pour dénoter un couple. Le produit cartésien de S par T , noté S × T , est
l’ensemble de tous les couples formés à partir des élément de S et de T . Voici la définition formelle.

S × T = {x 7→ y | x ∈ S ∧ y ∈ T} (2.7)

Notons que nous utilisons ici une version « abrégée » de la définition par compréhension; en effet,
selon la syntaxe introduite à la section précédente, on devrait retrouver une seule variable à la gauche
du séparateur « | » , alors qu’on retrouve ici un couple de variable x 7→ y. La version non-abrégé,
qui est beaucoup moins lisible, est la suivante:

S × T = {z | ∃x, y · z = x 7→ y ∧ x ∈ S ∧ y ∈ T}

Une relation r de S vers T est un sous-ensemble de S × T . On a les équivalences suivantes:

r ⊆ S × T
⇔

r ∈ P(S × T )
⇔

r ∈ S↔ T

En B, une relation définie par compréhension se note comme suit:

{x, y | A}

Malheureusement, on ne peut pas utiliser les formes usuelles {(x, y) | A} et {x 7→ y | A}.
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Syntaxe
Description Expression ASCII B Définition
couple (élément d’une relation) x 7→ y x |-> y parfois aussi noté (x, y)

couple (notation alternative) (x, y) (x, y) (x, y) = x 7→ y

n-uplet (x1, . . . , xn) (x1, . . . , xn) (x1, . . . , xn) = ((x1 7→ x2) 7→ . . . xn)

relation par compréhension {x, y | A} { x, y | A } z1 7→ z2 ∈ {x, y | A}⇔A[x, y := z1, z2]

produit cartésien S × T S * T {x 7→ y | x ∈ S ∧ y ∈ T}
ensemble de relations S↔ T S <-> T P(S × T )

identité id(S) id(S) {x 7→ y | x ∈ S ∧ x = y}
domaine d’une relation dom(r) dom(r) {x | ∃y · x 7→ y ∈ r}
codomaine d’une relation ran(r) ran(r) {y | ∃x · x 7→ y ∈ r}
composition (produit) (r1 ; r2) (r1 ; r2) {x 7→ y | ∃z · x 7→ z ∈ r1 ∧ z 7→ y ∈ r2}
attention: il faut toujours entourer une composition avec des parenthèses
produit direct r1 ⊗ r2 r1 >< r2 {x 7→ (y 7→ z) |

x 7→ y ∈ r1 ∧ x 7→ z ∈ r2}
restriction du domaine S ◁ r S <| r {x 7→ y | x ∈ S ∧ x 7→ y ∈ r}
restriction du codomaine r ▷ S r |> S {x 7→ y | y ∈ S ∧ x 7→ y ∈ r}
antirestriction du domaine S ◁− r S <<| r {x 7→ y | x ̸∈ S ∧ x 7→ y ∈ r}
antirestriction du codomaine r ▷− S r |>> S {x 7→ y | y ̸∈ S ∧ x 7→ y ∈ r}
surcharge r1 ◁− r2 r1 <+ r2 (dom(r2)◁− r1) ∪ r2
inverse r−1 r~ {x 7→ y | y 7→ x ∈ r}
image r[S] r[S] ran(S ◁ r)

itération rn iterate(r, n) r0 = id(S), rn = r ; rn−1, où r ∈ S↔ S
si S n’est pas donné, par convention,
on utilise S = dom(r) ∪ ran(r)

fermeture réflexive et transitive r∗ closure(r)
⋃
(n).(n ≥ 0 | rn)

fermeture transitive r+ closure1(r)
⋃
(n).(n ≥ 1 | rn)

Table 2.7: Opérations sur les relations

La figure 2.1 illustre la composition (r1 ; r2) de deux relations r1 ∈ A↔ B et r2 ∈ B ↔ C.
Le résultat est une relation de A↔ C. La composition relationnelle est similaire à l’opérateur de
jointure entre deux tables en SQL. On a

r1 ; r2 = SELECT A,C FROM r1 JOIN r2 ON B

La figure 2.2 représente une relation r ∈ S↔ S, où

S = {s1, s2, s3, s4, s5, s6, s7, s8}

La relation r a la valeur suivante :

r = {(s1, s2), (s2, s3), (s3, s4), (s5, s6), (s6, s7), (s7, s8), (s8, s5)}

Lorsqu’une relation est définie sur un espace homogène (i.e., le même ensemble est utilisé pour
le domaine et le codomaine), on peut représenter une relation par un graphe sur S. Un couple
(s1, s2) est représenté par une flèche de s1 vers s2 dans le graphe. La relation r2, notée rˆ2 dans
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Figure 2.1: La composition de deux relations

la figure 2.2, est définie par (r ; r); elle représente les chemins de longueur 2 dans le graphe de la
relation r, en donnant le point de départ (la source) et le point d’arrivée (la destination). Il est
donc assez facile de visualiser le résultat d’une composition relationnelle. De manière générale, la
relation rn représente les chemins de longueur n dans le graphe de r. La fermeture transitive de
r, noté r+ =

⋃
(n).(n ≥ 1 | rn) est illustrée dans la figure 2.3. Elle représente tous les chemins de

longueur supérieure ou égale à 1 dans r. On trouve aussi dans cette figure la relation identité id(S)
et la fermeture réflexive et transitive r∗ = r+ ∪ id(S). La relation identité représente les chemins
de longueur 0 dans le graphe de r, c’est-à-dire que l’on ne se déplace pas dans le graphe, et ainsi la
source est égale à la destination.
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Figure 2.2: Le graphe d’une relation homogène r, et les relations r2, r3, r4, r5, r6
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Figure 2.3: Les relations id(S), r+ et r∗ calculées à partir de S et de la relation r de la figure 2.2
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2.5 Les fonctions

Une fonction est un cas particulier de relation. Dans cette section, nous introduisons huit classes de
fonction, la plus générale étant la classe des fonctions. La figure 2.4 illustre les classes de fonctions.
Le tableau 2.8 résume les classes de fonctions.

Syntaxe
Description Expression ASCII B Définition
fonctions S 7→ T S +-> T {f | f ∈ S↔ T ∧ f−1 ; f ⊆ id(T )}
fonctions totales S→ T S --> T {f | f ∈ S 7→ T ∧ dom(f) = S}
injections S 7↣ T S >+> T {f | f ∈ S 7→ T ∧ f−1 ∈ T 7→ S}
injections totales S ↣ T S >-> T {f | f ∈ S 7↣ T ∧ dom(f) = S}
surjections S 7↠ T S +->> T {f | f ∈ S 7→ T ∧ ran(f) = T}
surjections totales S ↠ T S -->> T {f | f ∈ S 7↠ T ∧ dom(f) = S}
bijections S↣↠7↠ T S >+>> T {f | f ∈ S 7↣ T ∧ f ∈ S 7↠ T}
bijections totales S ↣↠ T S >->> T {f | f ∈ S ↣ T ∧ f ∈ S ↠ T}
lambda expression λx.(A | t) %x.(A | t) {x 7→ t | A}

Table 2.8: Classes et constructeur de fonctions

rela%on  S ↔ T

fonction S ⇸ T

totale
S ⟶ T

injective
S ⤔ T

surjec%ve
S ⤀ T

bijec%ve
S ⤗ T

injec%ve totale
T ↣ S

surjective
totale
S ↠ T

injec%ve
totale
S ↣ T

bijec%ve
totale
S ⤖ T

Figure 2.4: Les classes de fonctions
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2.5.1 Fonction

Une fonction f d’un ensemble S vers un ensemble T , notée f ∈ S 7→ T , est une relation telle que
chaque élément de dom(f) est associé à exactement un élément de T . De manière équivalente,
on peut aussi dire que chaque élément de S est associé via f à au plus un élément de T (i.e., les
éléments de S qui ne sont pas dans le domaine de f ne sont pas associés à un élément de T , bien
entendu). Ce qui donne les définitions suivantes, qui sont toutes équivalentes.

f ∈ S 7→ T
⇔

f ∈ S↔ T
∧ ∀x, y, z · x 7→ y ∈ f ∧ x 7→ z ∈ f ⇒ y = z

⇔
f ∈ S↔ T

∧ f−1 ; f ⊆ id(T )

On a les propriétés suivantes.

f ∈ S 7→ T
⇒

∀x · x ∈ dom(f)⇒ card(f [{x}]) = 1
∧
∀x · x ∈ S⇒ card(f [{x}]) ≤ 1

∧
∀x · x ∈ S⇒ card(f [{x}]) ∈ 0..1 ** lien avec diag. UML **

∧
∀y · y ∈ T ⇒ card(f−1[{y}]) ∈ 0.. card(S) ** lien avec diag. UML **

Ce qui donne ceci comme exemple typique, avec la partie en rouge qui montre la caractéristique
distinctive d’une fonction par rapport aux autres classes de fonctions, c’est-à-dire qu’un élément de
S peut ne pas être relié à un élément de T par la fonction f .

f ∈ S 7→ T

Les fonctions sont très utiles dans la modélisation des systèmes. Par exemple, les attributs
scalaires (i.e., ayant une seule valeur) d’une entité dans un modèle de données sont représentés par
des fonctions. Voici quelques exemples pour un livre et un membre.

titre ∈ Livre 7→ String
emprunteur ∈ Livre 7→ Membre

dateDePublication ∈ Livre 7→ Année
nom ∈ Membre 7→ String
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Certains attributs d’un livre ne peuvent être représentés par une fonction, car ils ont plusieurs
valeurs. Par exemple, un livre ayant potentiellement plusieurs auteurs, l’attribut auteurs est
représenté par une relation.

auteurs ∈ Livre↔ String

Ainsi, si le livre b1 représente le livre [1], on a les valeurs suivantes:

titre(b1) = « The B-book: Assigning Programs to Meanings »
emprunteur(b1) = m

dateDePublication(b1) = 1996
nom(m) = « Marc Frappier »

Vu que auteurs est une relation, on peut utiliser les expressions suivantes, qui sont équivalentes,
pour représenter certaines de ses valeurs:

auteurs[{b1}] = {« Jean-Raymond Abrial » }
b1 7→ « Jean-Raymond Abrial » ∈ auteurs

Si le livre b2 = [5], alors on a plusieurs auteurs. On a donc les expressions suivantes, qui sont
équivalentes:

auteurs[{b2}] = {« David Gries » , « Fred B. Schneider » }
{b2 7→ « David Gries » , b2 7→ « Fred B. Schneider » } ⊆ auteurs
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2.5.2 Fonction totale

Une fonction totale (aussi appelée application en mathématiques) f d’un ensemble S vers un en-
semble T , notée f ∈ S→T , est une relation telle que chaque élément de S est associé à exactement
un élément de T . Ce qui donne les définitions alternatives suivantes, qui sont toutes équivalentes.

f ∈ S→ T
⇔

f ∈ S 7→ T
∧ dom(f) = S

⇔
f−1 ; f ⊆ id(T )

∧ id(S) ⊆ f ; f−1

On a les propriétés suivantes.

f ∈ S→ T
⇒

∀x · x ∈ S⇒ card(f [{x}]) = 1
∧
∀x · x ∈ S⇒ card(f [{x}]) ∈ 1..1 ** lien avec diag. UML **

Ce qui donne ceci comme exemple typique, avec la partie en rouge qui montre la caractéristique
distinctive d’une fonction totale, c’est-à-dire que tous les éléments de S sont reliés à un élément de
T par la fonction f .

f ∈ S→ T

On note aussi que
S→ T ⊆ S 7→ T

ce qui signifie qu’une fonction totale est un cas particulier de fonction.
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2.5.3 Fonction injective

Une fonction injective (aussi appelée injection) f d’un ensemble S vers un ensemble T , notée
f ∈ S 7↣ T , est une fonction telle que f−1 est aussi une fonction. Cela signifie que chaque élément
de T est associé à au plus un élément de S. Ce qui donne les définitions suivantes, qui sont toutes
équivalentes.

f ∈ S 7↣ T
⇔

f ∈ S 7→ T
∧ ∀x, y, z · x 7→ z ∈ f ∧ y 7→ z ∈ f ⇒ x = y

⇔
f ∈ S 7→ T

∧ f−1 ∈ T 7→ S
⇔

f ; f−1 ⊆ id(S)
∧ f−1 ; f ⊆ id(T )

⇔
f ∈ S 7→ T

∧ ∀x · x ∈ S⇒ card(f [{x}]) ∈ 0..1 ** lien avec diag. UML **
∧ ∀y · y ∈ T ⇒ card(f−1[{y}]) ∈ 0..1 ** lien avec diag. UML **

Ce qui donne ceci comme exemple typique.

f ∈ S 7↣ T
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2.5.4 Fonction injective totale

Une fonction injective totale f d’un ensemble S vers un ensemble T est notée f ∈ S ↣ T . Ce qui
donne les définitions suivantes, qui sont toutes équivalentes.

f ∈ S ↣ T
⇔

f ∈ S 7↣ T
∧ dom(f) = S

⇔
f ; f−1 = id(S)

∧ f−1 ; f ⊆ id(T )
⇔

f ∈ S 7→ T
∧ ∀x · x ∈ S⇒ card(f [{x}]) ∈ 1..1 ** lien avec diag. UML **
∧ ∀y · y ∈ T ⇒ card(f−1[{y}]) ∈ 0..1 ** lien avec diag. UML **

Ce qui donne ceci comme exemple typique.

f ∈ S ↣ T
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2.5.5 Fonction surjective

Une fonction surjective (aussi appelée surjection) f d’un ensemble S vers un ensemble T , notée
f ∈ S 7↠ T , est une fonction telle que chaque élément de T est une image d’un élément de S. Ce
qui donne les définitions suivantes, qui sont toutes équivalentes.

f ∈ S 7↠ T
⇔

f ∈ S 7→ T
∧ ∀y · y ∈ T ⇒∃x · x ∈ dom(f) ∧ f(x) = y

⇔
f ∈ S 7→ T

∧ ran(f) = T
⇔

f ∈ S 7→ T
∧ f−1 ; f = id(T )

⇔
f ∈ S 7→ T

∧ ∀x · x ∈ S⇒ card(f [{x}]) ∈ 0..1 ** lien avec diag. UML **
∧ ∀y · y ∈ T ⇒ card(f−1[{y}]) ∈ 1.. card(S) ** lien avec diag. UML **

Ce qui donne ceci comme exemple typique.

f ∈ S 7↠ T
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2.5.6 Fonction surjective totale

Une fonction surjective totale f d’un ensemble S vers un ensemble T est notée f ∈ S ↠ T . Ce qui
donne les définitions suivantes, qui sont toutes équivalentes.

f ∈ S ↠ T
⇔

f ∈ S 7↠ T
∧ f ∈ S→ T

⇔
f ∈ S→ T

∧ ran(f) = T
⇔

f ∈ S 7→ T
∧ f−1 ; f = id(T )
∧ id(S) ⊆ f ; f−1

⇔
f ∈ S 7→ T

∧ ∀x · x ∈ S⇒ card(f [{x}]) ∈ 1..1 ** lien avec diag. UML **
∧ ∀y · y ∈ T ⇒ card(f−1[{y}]) ∈ 1.. card(S)

Ce qui donne ceci comme exemple typique.

f ∈ S ↠ T
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2.5.7 Fonction bijective

Une fonction bijective f d’un ensemble S vers un ensemble T , notée f ∈ S↣↠7↠ T , est une fonction
injective et surjective. Ce qui donne les définitions suivantes, qui sont toutes équivalentes.

f ∈ S↣↠7↠ T
⇔

f ∈ S 7↣ T
∧ f ∈ S 7↠ T

⇔
f ∈ S 7→ T

∧ ∀x · x ∈ S⇒ card(f [{x}]) ∈ 0..1 ** lien avec diag. UML **
∧ ∀y · y ∈ T ⇒ card(f−1[{y}]) ∈ 1..1

⇔
f−1 ∈ T ↣ S

Ce qui donne ceci comme exemple typique.

f ∈ S↣↠7↠ T

Vu que l’inverse d’une bijection est une injection totale, les bijections ne sont pas utilisées en
pratique; on utilise au lieu les injections totales.
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2.5.8 Fonction bijective totale

Une fonction bijective totale f d’un ensemble S vers un ensemble T , notée f ∈ S ↣↠ T , est une
fonction totale, injective et surjective. Ce qui donne les définitions suivantes, qui sont toutes équiv-
alentes.

f ∈ S ↣↠ T
⇔

f ∈ S ↣ T
∧ f ∈ S ↠ T

⇔
f ; f−1 = id(S)

∧ f−1 ; f = id(T )
⇔

f ∈ S 7→ T
∧ ∀x · x ∈ S⇒ card(f [{x}]) ∈ 1..1 ** lien avec diag. UML **
∧ ∀y · y ∈ T ⇒ card(f−1[{y}]) ∈ 1..1 ** lien avec diag. UML **

Ce qui donne ceci comme exemple typique.

f ∈ S ↣↠ T

Dans le langage courant, les bijections totales sont simplement appelées des bijections.
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E F
i..jm..n a

Figure 2.5: Modèle conceptuel de données

Livre Membre
0..10..k prêt

0..*0..*
réservation

Figure 2.6: Modèle conceptuel d’une bibliothèque

2.5.9 Modèle conceptuel de données

Un modèle conceptuel de données permet de représenter les liens entre les éléments d’un système.
La notation la plus usitée est la notation de Chen [3], aussi reprise en UML pour les diagrammes de
classes. La figure 2.5 donne un exemple typique de modèle conceptuel. On y retrouve deux entités,
E et F, reliées par une association a. Les annotations i..j et m..n sont appelées des multiplicités,
ou bien des cardinalités. Une entité dénote un ensemble d’objets; une association dénote une
relation. Une multiplicité dénote une contrainte sur le nombre d’images d’un élément d’une entité
par l’association a. Voici la signification (sémantique) associée aux multiplicités.

i ∈ N ∧ j ∈ N ⇒ (∀x · x ∈ E⇒ card(a[{x}]) ∈ i..j) (2.8)

m ∈ N ∧ n ∈ N ⇒ (∀x · x ∈ F ⇒ card(a−1[{x}]) ∈ m..n) (2.9)

L’équation 2.8 signifie qu’un élément de l’entité E est associé à au moins i et au plus j éléments
de l’entité F via l’association a. Dualement, l’équation 2.9 signifie qu’un élément de l’entité F est
associé à au moins m et au plus n éléments de l’entité E. De plus, on a que i, j,m, n sont des
nombres naturels. On peut aussi utiliser la valeur spéciale « * » pour j et n, ce qui signifie qu’il n’y
a pas de borne supérieure pour le nombre d’éléments associés, ce qui donne la sémantique suivante.

i ∈ N ∧ j = « * » ⇒ (∀x · x ∈ E⇒ card(a[{x}]) ≥ i) (2.10)

m ∈ N ∧ n = « * » ⇒ (∀x · x ∈ F ⇒ card(a−1[{x}]) ≥ m) (2.11)

La figure 2.6 illustre un modèle conceptuel de données pour un système de gestion de bibliothèque,
où on doit gérer les prêts et les réservations de livres pour des membres. Elle indique qu’un livre est
emprunté par au plus un membre à la fois (i.e., 0..1), et qu’un membre peut emprunter au plus k
livre à la fois (i.e., 0..k). Un membre peut réserver un nombre arbitraire de livres (i.e., 0..*), et un
livre peut être réservé par un nombre arbitraire de membres (i.e., 0..*). Cela donne les contraintes
suivantes.

pret ∈ Livre 7→Membre ∧ ∀m ·m ∈Membre⇒ card(pret−1[{m}]) ≤ k
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E F
0..10..1 f

Figure 2.7: Modèle conceptuel correspondant à une fonction injective

reservation ∈ Livre↔Membre

L’association prêt est donc une fonction, alors que l’association réservation est une relation. Chaque
classe de fonctions peut être représentée par des valeurs particulières des multiplicités dans un
modèle conceptuel de données. Par exemple, les fonctions injectives f ∈ E 7↣ F sont représentées
par le diagramme de la figure 2.7.

74



2.6 Propriétés des relations

Définition 16 Soit r ∈ S↔ S. On définit les propriétés suivantes pour r.

Propriété Définition en logique Définition Exemples
relationnelle

réflexive ∀x · x ∈ S⇒ x 7→ x ∈ r id(S) ⊆ r =,≤,⊆
irréflexive ∀x · x ∈ S⇒ x 7→ x ̸∈ r id(S) ∩ r = {} ̸=, <,⊂
(syn. antiréflexive)

transitive

∀(x, y, z) ·
x 7→ y ∈ r ∧ y 7→ z ∈ r
⇒
x 7→ z ∈ r

r ; r ⊆ r =, <,≤,⊂,⊆

symétrique

∀(x, y) ·
x 7→ y ∈ r
⇒
y 7→ x ∈ r

r−1 = r =

asymétrique
(syn. antisymétrique
forte)

∀(x, y) ·
x 7→ y ∈ r
⇒
y 7→ x ̸∈ r

r ∩ r−1 = {} <,⊂

antisymétrique

∀(x, y) ·
x 7→ y ∈ r ∧ y 7→ x ∈ r
⇒
x = y

r ∩ r−1 ⊆ id(S) =, <,≤,⊆

totale ∀x · x ∈ S⇒∃y · x 7→ y ∈ r dom(r) = S =, <,≤,⊆
surjective ∀x · x ∈ S⇒∃y · y 7→ x ∈ r ran(r) = S =, <,≤,⊆
pré-ordre réflexive et transitive =,≤,⊆
équivalence réflexive, transitive, symétrique =

ordre réflexive, transitive et antisymétrique =,≤,⊆
ordre strict irréflexive et transitive (par déduction, <,⊂

elle est aussi asymétrique)
bien fondée ∀T · T ∈ P1(S)⇒ < sur N, ⊂

∃s1 · s1 ∈ T ∧ ∀s2 · s2 7→ s1 ̸∈ r
i.e., il existe un élément minimal dans
T .
Ou bien, de manière équivalente,
il n’existe pas de suite infinie x0, x1, . . .
telle que xn+1 7→ xn ∈ r
i.e., . . . < x2 < x1 < x0

acyclique il n’existe pas de suite x0, . . . , xn r+ ∩ id(S) = {} < sur N, Z, R, ⊂
telle que xn 7→ x0 ∈ r et
∀i · i ∈ 0..(n -1)⇒ xi 7→ xi+1 ∈ r

□
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2.6.1 Relation réflexive

Propriété Définition en logique Définition Exemples
relationnelle

réflexive ∀x · x ∈ S⇒ x 7→ x ∈ r id(S) ⊆ r =,≤,⊆

Voici quelques autres exemples.

1. Soit T = {a, b}. Il existe 4 relations réflexives dans T ↔ T .

(a) {(a 7→ a), (b 7→ b)}
(b) {(a 7→ a), (b 7→ b), (a 7→ b)}
(c) {(a 7→ a), (b 7→ b), (b 7→ a)}
(d) {(a 7→ a), (b 7→ b), (a 7→ b), (b 7→ a)}

Pour être réflexive, une relation doit contenir id(T ) = {(a 7→ a), (b 7→ b)}.

2. Soit T un ensemble de pièces chez un détaillant de pièces d’auto. Une pièce (par exemple un
phare, un pare-brise, des freins, un pneu) peut être produite par différents fournisseurs. Le
détaillant désire rechercher une pièce dans son inventaire et obtenir en sortie toute les pièces
disponibles qui lui sont équivalentes. On peut alors définir la relation PièceÉquivalente ∈ T↔T
telle que

x 7→ y ∈ PièceÉquivalente ⇔ « x est une pièce équivalente a y »

Cette relation est réflexive, car toute pièce est équivalente à elle-même. Quand le détaillant
fait une recherche sur les pièces équivalentes à x qu’il détient en inventaire, il veut obtenir x
et aussi toutes les autres pièces considérées équivalentes à x.
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2.6.2 Relation irréflexive

Propriété Définition en logique Définition Exemples
relationnelle

irréflexive ∀x · x ∈ S⇒ x 7→ x ̸∈ r id(S) ∩ r = {} ̸=, <,⊂
(syn. antiréflexive)

Voici quelques autres exemples.

1. Soit T = {a, b}. Il existe 4 relations irréflexives dans T ↔ T .

(a) {}
(b) {(a 7→ b)}
(c) {(a 7→ b), (b 7→ a)}
(d) {(b 7→ a)}

Pour qu’une relation soit irréflexive, elle ne doit contenir aucun couple de l’identité id(T ).

2. Si une relation n’est pas réflexive, cela ne veut pas dire qu’elle est nécessairement irréflexive.
Autrement dit, irréflexive n’est pas le contraire de réflexive, et vice-versa (une relation qui n’est
pas irréflexive n’est pas nécessairement réflexive). Ainsi, pour T = {a, b}, il y a 8 relations
qui ne sont ni réflexives, ni irréflexives. En voici 4 exemples.

(a) {(a 7→ a)}
(b) {(a 7→ a), (a 7→ b)}
(c) {(a 7→ a), (b 7→ a)}
(d) {(a 7→ a), (a 7→ b), (b 7→ a)}

Leur caractéristique commune est qu’elles contiennent un sous-ensemble strict de id(T ).

3. Les relations familiales suivantes sont irréflexives (ainsi que plusieurs autres) : Parent, Grand-
Parent, Fraterie, Cousin, Oncle, Ancêtre.
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2.6.3 Relation transitive

Propriété Définition en logique Définition Exemples
relationnelle

transitive

∀(x, y, z) ·
x 7→ y ∈ r ∧ y 7→ z ∈ r
⇒
x 7→ z ∈ r

r ; r ⊆ r =, <,≤,⊂,⊆

Voici quelques autres exemples.

1. Soit T = {a, b, c, d}. La relation suivante n’est pas transitive

{a 7→ b, b 7→ c, c 7→ d}

Il lui manque les 3 couples suivants

(a) a 7→ c, puisque a 7→ b ∈ r et b 7→ c ∈ r

(b) a 7→ d, puisque a 7→ c devrait être dans r et c 7→ d ∈ r

(c) b 7→ d, puisque b 7→ c ∈ r et c 7→ d ∈ r

La relation suivante est transitive

{a 7→ b, a 7→ c, a 7→ d, b 7→ c, b 7→ d, c 7→ d}

Si une relation r est transitive, alors r = r+ =
⋃

n≥1 r
n. Voyons pourquoi. Par définition de

transitivité, on a r ; r ⊆ r. Donc r2 ⊆ r. Pour prouver que n > 0⇒ rn ⊆ r, nous allons utiliser
la propriété suivante, soit la monotonie de la composition relationnelle.

r1 ⊆ r2 ⇒ r1 ; r3 ⊆ r2 ; r3

Montrons que r3 ⊆ r.

r2 ⊆ r
⇒ ⟨ monotonie de ; ⟩

r2 ; r ⊆ r ; r
⇔ ⟨ def. de rn ⟩

r3 ⊆ r2

⇒ ⟨ r2 ⊆ r et transitivité de ⊆ ⟩
r3 ⊆ r

On pourrait continuer ainsi pour chaque valeur de n > 3. Pour prouver complètement, nous
pourrions effectuer une preuve par induction, ce qui est l’objet du chapitre 3.

2. Les relations familiales suivantes sont transitives : Ancêtre.

3. La relation Préalable sur les cours n’est pas transitive. La relation Préalable+ est transitive.

4. La relation PièceÉquivalente est transitive.
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2.6.4 Relation symétrique

Propriété Définition en logique Définition Exemples
relationnelle

symétrique

∀(x, y) ·
x 7→ y ∈ r
⇒
y 7→ x ∈ r

r−1 = r =

Voici quelques exemples.

1. Soit T = {a, b, c, d}. La relation suivante n’est pas symétrique

{a 7→ b, b 7→ c, c 7→ d}

Il lui manque les couples suivants pour être symétrique.

{b 7→ a, c 7→ b, d 7→ c}

La relation suivante est symétrique:

{a 7→ b, b 7→ a, b 7→ c, c 7→ b, c 7→ d, d 7→ c}

2. Les relations familiales suivantes sont symétriques : Fraterie, Cousin.

3. La relation PièceÉquivalente est symétrique.
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2.6.5 Relation asymétrique

Propriété Définition en logique Définition Exemples
relationnelle

asymétrique
(syn. antisymétrique
forte)

∀(x, y) ·
x 7→ y ∈ r
⇒
y 7→ x ̸∈ r

r ∩ r−1 = {} <,⊂

Voici quelques exemples.

1. Soit T = {a, b, c, d}. La relation suivante n’est pas asymétrique

r1 = {a 7→ a, a 7→ b, b 7→ a, b 7→ c, c 7→ d}

Il faut lui retirer les couples suivants pour être asymétrique.

(a) a 7→ a, par définition de asymétrique (x 7→ y ∈ r⇒ y 7→ x ̸∈ r); dans ce cas, on a x = y
pour le couple a 7→ a, donc il ne peut y avoir de couple de la forme x 7→ x dans une
relation asymétrique.

(b) l’un des deux couples suivants: a 7→ b, ou bien b 7→ a La relation suivante est asymétrique:

{b 7→ a, b 7→ c, c 7→ d}

2. Une relation qui n’est pas symétrique n’est pas nécessairement asymétrique. La relation r1
ci-dessus n’est ni symétrique, ni asymétrique. Elle n’est pas symétrique parce qu’il lui manque
les couples c 7→ b et d 7→ c.

3. Une relation asymétrique est toujours irréflexive.

r est asymétrique ⇒ r est irréflexive

4. Les relations familiales suivantes sont asymétriques : Parent, GrandParent.
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2.6.6 Relation antisymétrique

Propriété Définition en logique Définition Exemples
relationnelle

antisymétrique

∀(x, y) ·
x 7→ y ∈ r ∧ y 7→ x ∈ r
⇒
x = y

r ∩ r−1 ⊆ id(S) =, <,≤, >,≥,⊂,⊆

Voici quelques exemples.

1. Soit T = {a, b, c, d}. La relation suivante n’est pas antisymétrique

r = {a 7→ a, a 7→ b, b 7→ a, b 7→ c, c 7→ d}

Il faut la modifier de la manière suivante pour qu’elle devienne antisymétrique.

(a) l’un des deux couples suivant: a 7→ b, ou bien b 7→ a

2. Une relation asymétrique est aussi antisymétrique

r asymétrique ⇒ r antisymétrique

3. Une relation antisymétrique n’est pas nécessairement asymétrique, car les couples de la forme
x 7→ x ne sont pas permis dans une relation asymétrique, mais ils le sont dans une relation
antisymétrique.

4. Une relation antisymétrique et irréflexive est asymétrique.

r est antisymétrique et irréflexive ⇒ r est asymétrique

5. Une relation antisymétrique n’est pas nécessairement réflexive (e.g., <).
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2.6.7 Relation d’équivalence

Propriété Définition en logique Définition Exemples
relationnelle

équivalence réflexive, transitive, symétrique =

Voici quelques exemples.

1. Soit T = {a, b, c}. La relation suivante n’est pas une relation d’équivalence

r = {a 7→ a, a 7→ b, b 7→ a, b 7→ c}

Il faut lui ajouter les couples suivants pour en faire une relation d’équivalence.

{b 7→ b, c 7→ c, c 7→ b, a 7→ c, c 7→ a}

2. La relation PièceÉquivalente est une relation d’équivalence.

3. La relation Fraterie n’est pas une relation d’équivalence, car elle n’est pas réflexive.

2.6.8 Relation d’ordre

Propriété Définition en logique Définition Exemples
relationnelle

ordre réflexive, transitive et antisymétrique =,≤,⊆

Voici quelques exemples.

1. Soit T = {a, b, c}. La relation suivante n’est pas une relation d’ordre.

{a 7→ a, a 7→ b, b 7→ a, b 7→ c}

On peut la transformer en relation d’ordre en retirant le couple b 7→ a, et en lui ajoutant les
couples suivants.

{b 7→ b, c 7→ c, a 7→ c}

Il y a bien sûr d’autres façons de la transformer en relation d’ordre. Par exemple, en retirant
a 7→ b et en ajoutant

{b 7→ b, c 7→ c}

La relation suivante est une relation d’ordre

{a 7→ a, a 7→ b, a 7→ c, b 7→ b, b 7→ c, c 7→ c}
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2.6.9 Relation d’ordre strict

Propriété Définition en logique Définition Exemples
relationnelle

ordre strict irréflexive et transitive <,⊂

Voici quelques exemples.

1. Soit T = {a, b, c}. La relation suivante n’est pas une relation d’ordre strict.

r = {a 7→ a, a 7→ b, b 7→ a, b 7→ c}

On peut la transformer en relation d’ordre en retirant les couples a 7→ a et b 7→ a, et en lui
ajoutant le couple a 7→ c. Il y a bien sûr d’autres façons de la transformer en relation d’ordre
strict. Par exemple, en retirant a 7→ a et a 7→ b. La relation suivante est une relation d’ordre
strict

{a 7→ b, a 7→ c, b 7→ c}

2. Une relation d’ordre strict est aussi asymétrique.

r est un ordre strict ⇒ r est asymétrique
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2.6.10 Relation bien fondée

Propriété Définition en logique Définition Exemples
relationnelle

bien fondée ∀T · T ∈ P1(S)⇒ < sur N, ⊂
∃s1 · s1 ∈ T ∧ ∀s2 · s2 7→ s1 ̸∈ r

i.e., il existe un élément minimal dans
T .
Ou bien, de manière équivalente,
il n’existe pas de suite infinie x0, x1, . . .
telle que xn+1 7→ xn ∈ r
i.e., . . . 7→ x2 7→ x1 7→ x0

Voici quelques exemples.

1. Une relation bien fondée ne permet pas de remonter les flèches infiniment; il faut que la relation
s’arrête quand on remonte les flèches, i.e., la relation suivante n’est pas bien fondée:

. . . 7→ x2 7→ x1 7→ x0

2. La relation < sur les naturels (N) est bien fondée, car on s’arrête à 0 quand on remonte les
flèches.

0 7→ 1 7→ 2 7→ 3 7→ . . .

3. La relation < sur N1 est aussi bien fondée.

4. La relation < sur les entiers (Z) n’est pas bien fondée, à cause de la suite suivante

0,−1,−2, . . .

c’est à dire
. . . 7→ −3 7→ −2 7→ −1 7→ 0

5. La relation < sur les réels (R) n’est pas bien fondée.

6. La relation ⊂ sur les ensembles est bien fondée.

7. Les relations Parent, Ancêtre et Préalable sont bien fondées.

8. Une relation d’ordre strict n’est pas nécessairement bien fondée (e.g.,< sur Z).

9. Une relation bien fondée n’est pas nécessairement une relation d’ordre strict, car une relation
bien fondée n’est pas nécessairement transitive.

10. Une relation bien fondée est asymétrique et irréflexive.

r est bien fondée ⇒ r est asymétrique et irréflexive
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2.6.11 Relation acyclique

Propriété Définition en logique Définition Exemples
relationnelle

acyclique il n’existe pas de suite x0, . . . , xn r+ ∩ id(S) = {} < sur N, Z, R, ⊂
telle que xn 7→ x0 ∈ r et
∀i · i ∈ 0..(n -1)⇒ xi 7→ xi+1 ∈ r

Voici quelques exemples.

1. Une relation acyclique ne contient pas de cycle

x0 7→ . . . 7→ x0

2. Une relation bien fondée est aussi acyclique.

r est bien fondée ⇒ r est acyclique

3. Une relation acyclique n’est pas nécessairement bien fondée; par exemple, la relation < sur
les entiers (Z) ne contient pas de cycle, mais on peut remonter les flèches infiniment, i.e., vers
la gauche, dans la l’exemple ci-dessous.

. . . 7→ −3 7→ −2 7→ −1 7→ 0

4. Les relations Parent, Oncle et Préalable sont acycliques.

5. Les relations Fraterie et Cousin ne sont pas acycliques.
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2.7 Les nombres

Syntaxe
Description Expression ASCII B Exemple
successeur succ succ succ = λx.(x ∈ Z | x+ 1)

addition m+ n m+ n 1 + 1 = 2

soustraction m− n m− n 2− 1 = 1

multiplication m ∗ n m ∗ n 2 ∗ 2 = 4

puissance mn m ** n 32 = 9

division entière m/n m/n 5/2 = 2

modulo m mod n m mod n 5 mod 2 = 1

maximum max(S) max(S) max({1, 2, 3}) = 3

minimum min(S) min(S) min({1, 2, 3}) = 1

somme quantifiée Σ(x).(A | t) SIGMA(x).(A | t) Σ(x).(x ∈ 1..3 | x ∗ 2) =
1 ∗ 2 + 2 ∗ 2 + 3 ∗ 2 = 12

produit quantifié Π(x).(A | t) PI(x).(A | t) Π(x).(x ∈ 1..3 | x+ 1) =
(1 + 1) ∗ (2 + 1) ∗ (3 + 1) = 24

plus petit x < y x < y 1 < 2

plus petit ou égal x ≤ y x <= y 1 ≤ 1

plus grand x > y x > y 2 > 1

plus grand ou égal x ≥ y x >= y 2 ≥ 2

Table 2.9: Opérations et prédicats sur les nombres
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2.8 Diverses lois

Soit A,B,C, S, T des ensembles et r, r1, r2 des relations sur S.

Égalité transitive x = y ∧ y = z ⇒ x = z (LE-1)
x ∈ S ∧ y ∈ S ∧ f ∈ S→ T ⇒

Leibniz (x = y ⇒ f(x) = f(y)) (LE-2)
inclusion prédicat A⇒B ⇒ {x | A} ⊆ {x | B} (LE-3)
appartenance 1 x ∈ {y | A} ⇔ A[y := x] (LE-4)
appartenance 2 x ∈ {x | A} ⇔ A (LE-5)
égalité ensemble 1 S = T ⇔ ∀x · x ∈ S⇔ x ∈ T (LE-6)
inclusion ensemble S ⊆ T ⇔ ∀x · x ∈ S⇒ x ∈ T (LE-7)
égalité ensemble 2 S = T ⇔ S ⊆ T ∧ T ⊆ S (LE-8)
monotonie union A ⊆ B ⇒ A ∪ C ⊆ B ∪ C (LE-9)
monotonie intersection A ⊆ B ⇒ A ∩ C ⊆ B ∩ C (LE-10)
monotonie différence A ⊆ B ⇒ A− C ⊆ B − C (LE-11)
antitonie différence A ⊆ B ⇒ C −A ⊇ C −B (LE-12)
monotonie cardinalité A ⊆ B ⇒ card(A) ≤ card(B) (LE-13)
intersection inclusion A ∩B ⊆ A (LE-14)
union inclusion A ⊆ A ∪B (LE-15)

monotonie produit r1 ⊆ r2 ⇒ r1 ; r3 ⊆ r2 ; r3
∧ r3 ; r1 ⊆ r3 ; r2

(LE-16)

monotonie inverse r1 ⊆ r2 ⇒ r−1
1 ⊆ r−1

2 (LE-17)
monotonie addition i < j ⇒ i+ k < j + k (LE-18)
monotonie soustraction i < j ⇒ i− k < j − k (LE-19)
monotonie multiplication k > 0 ⇒ (i < j ⇒ i ∗ k < j ∗ k) (LE-20)
antitonie multiplication k < 0 ⇒ (i < j ⇒ i ∗ k > j ∗ k) (LE-21)

si x ∈ S ∧ f ∈ S→ T ∧ g ∈ S→ T alors
évaluation fonction f = g ⇒ f(x) = g(x) (LE-22)

si x ∈ S ∧ f ∈ S→ T ∧ g ∈ T → U alors
composition fonction (f ; g)(x) = g(f(x)) (LE-23)

si x = y alors
égalite substitution t = u ⇒ (t = u)[x := y] (LE-24)
identité élément neutre id(S) ; r = r (LE-25)
identité élément neutre r ; id(S) = r (LE-26)
typage composition f ∈ S→ T ∧ g ∈ T → U ⇒ f ; g ∈ S→ U (LE-27)
typage fonction f ∈ S 7→ T ∧ x ∈ dom(f) ⇒ f(x) ∈ T (LE-28)
typage fonction totale f ∈ S→ T ∧ x ∈ S ⇒ f(x) ∈ T (LE-29)

Table 2.10: Diverses lois

2.9 Les suites

• w = [σ1, . . . , σn] dénote une suite formée des symboles σ1, . . . , σn.

En B, une suite w formée d’éléments de S est une fonction de N 7→ S telle que

dom(w) = 1.. card(w)
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On écrit donc w(i) en B pour dénoter σi. Le tableau 2.11 présente les opérateurs du langage
B permettant de manipuler des suites.

Plusieurs synonymes du terme suite sont utilisés dans la littérature:

– mot,

– chaîne de caractères (inspiré de l’anglais character string),

– séquence de symboles.

Une suite se distingue d’un ensemble par les caractéristiques suivantes:

– l’ordre d’énumération des éléments de la suite est important, alors que l’ordre d’énumération
des éléments d’un ensemble n’est pas important;

– un élément peut apparaître plusieurs fois dans une suite, et chaque occurrence compte,
alors qu’un élément peut apparaitre une seule fois dans un ensemble.

Par exemple, on a les propriétés suivantes.

[a, b] ̸= [b, a]
[a, a] ̸= [a]

{a, b} = {b, a}
{a, a} = {a}

• une suite injective ne contient pas de doublons, car elle est définie sur l’espace N 7↣ S.

Le tableau 2.11 décrit les principales opérations sur les suites.
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Syntaxe
Description Expression ASCII B Définition/Exemple
suite vide [ ] []
suite par extension [t1, . . . , tn] [t1, . . . , tn]
suites sur S seq(S) seq(S) {f | f ∈ N 7→ S ∧ finite(f)

∧ dom(f) = 1.. card(f)}
suites non-vide sur S seq1(S) seq1(S) seq(S)− [ ]

suites injective sur S iseq(S) iseq(S) seq(S) ∩ N 7↣ S

suites inj. non-vide sur S iseq1(S) iseq1(S) iseq1(S)− [ ]

concaténation s1
⌢ s2 s1^s2 [a, b] ⌢[c, d] = [a, b, c, d]

s1
⌢ s2 = s1 ∪ ((succ−1)card(s1) ; s2)

premier élément first(s) first(s) s ̸= [ ], first([a, b, c]) = a
s ̸= [ ]⇒ first(s) = s(1)

sauf premier élément tail(s) tail(s) s ̸= [ ], tail([a, b, c]) = [b, c]
s ̸= [ ]⇒ tail(s) = succ ; ({1}◁− s)

dernier élément last(s) last(s) s ̸= [ ], last([a, b, c]) = c
s ̸= [ ]⇒ last(s) = s(card(s))

sauf dernier élément front(s) front(s) s ̸= [ ], front([a, b, c]) = [a, b]
s ̸= [ ]⇒ front(s) = {card(s)}◁− s

inverse rev(s) rev(s) rev([a, b, c]) = [c, b, a]
rev(s) = (λx.(x ∈ dom(s) | card(s)− x+ 1)) ; s

ajout de e au début de s e→ s e -> s c→ [a, b] = [c, a, b]
e→ s = [e] ⌢ s

ajout de e à la fin de s s← e s <- e [a, b]← c = [a, b, c]
s← e = s ⌢[e]

Table 2.11: Opérations et prédicats sur les suites

2.10 Combinatoire

Voici quelques résultats de combinatoire fréquemment utilisés et associés aux éléments de ce chapitre.

• card(P(S)) = 2card(S)

• card(S × T ) = card(S) ∗ card(T )

• card(S→ T ) = card(T )card(S)

• card(S ↣ T ) = card(T )!
(card(T )−card(S))!

– Lorsque S = 1..k, alors s ∈ S ↣ T est une séquence injective, que l’on appelle aussi un
arrangement en combinatoire. Si n = card(T ), alors on note typiquement

card(1..k ↣ T ) = An
k

• 1 ≤ k ≤ card(S)⇒ card({x | x ∈ P(S) ∧ card(x) = k}) = card(S)!
(card(S)−k)!∗k!
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– Si n = card(S), alors cette expression est aussi appelée le coefficient binomial, ou bien le
nombre de combinaisons, et dénotée

Cn
k =

(
n
k

)
=

n!

(n− k)!k!

– Elle dénote le nombre de choix possibles de k éléments de S.
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2.11 Utilisation de ProB

Nous utilisons le langage B et l’outil ProB pour tester des formules de logique du premier ordre ainsi
que des expressions sur des structures discrètes (ensemble, relation et fonction). Une spécification
B a la forme suivante:

MACHINE nomMachine

SETS
nomEnsemble = {element, . . . , element}

; . . .
; nomEnsemble = {element, . . . , element}

CONSTANTS
nomConstante, . . . , nomConstante

PROPERTIES
A

END

La clause SETS permet de déclarer des ensemble par énumération de leurs éléments. Les déclarations
des ensembles sont séparées par des « ; » . Ces ensembles peuvent ensuite être utilisés pour définir
d’autres ensembles dans la clause CONSTANTS. La clause CONSTANTS permet de déclarer des
noms de constante, séparées par des « , » . La valeur de ces constantes est déterminée par la
clause PROPERTIES. La clause PROPERTIES permet de déclarer une (et une seule) formule qui
détermine la valeur des constantes. Il s’agit généralement d’une conjonction, que l’on écrit avec
l’indentation suivante, pour en faciliter la lecture.

A1

∧A2

∧ . . .
∧An

Voici un exemple de machine qui définit des relations familiales.

MACHINE Exemple

/* Voici un commentaire sur
plusieurs lignes

*/

// Voici un autre commentaire

SETS

Personne = {p0, p1, p2, p3, p4, p5, p6}

CONSTANTS
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Homme
, Femme
, Parent /* (x,y) : Parent ssi x est un parent de y */
, OncleTante /* (x,y) : OncleTante ssi x est un oncle ou une tante de y */
, OncleTante_alt /* Définition alternative de OncleTante,

utilisant seulement des opérations sur les relations */
, Oncle /* (x,y) : Oncle ssi x est un oncle de y */
, Tante /* (x,y) : Tante ssi x est une tante de y */
, EnsOncle /* ensemble des personnes qui sont des oncles */

PROPERTIES

Homme={p0, p1}
& Femme=Personne-Homme
& Parent={

(p0,p1)
,(p0,p2)
,(p1,p3)
,(p1,p4)
,(p2,p5)
,(p2,p6)

}
& OncleTante =

{ x,y |
#(z1,z2).

(
z2 /= x

& (z1,x) : Parent
& (z1,z2) : Parent
& (z2,y) : Parent
)

}
& OncleTante_alt = (((Parent~ ; Parent) - id(Personne)) ; Parent)

& Oncle = Homme <| OncleTante
& Tante = Femme <| OncleTante

& EnsOncle = dom(OncleTante) /\ Homme
END

La figure 2.8 représente l’écran principal de ProB. La partie supérieure est un éditeur de spécification.
La partie inférieure est divisée en trois parties. À droite, sous la section State Properties, on retrouve
la définition des symboles. Au départ, seuls les symboles prédéfinis (ex., MAXINT et MININT) y
apparaissent, ainsi que les ensembles de la clause SETS. Ces informations sont affichées lorsqu’on
ouvre une spécification. Si on modifie une spécification, il faut la ré-ouvrir (menu File→Reopen, ou
bien le raccourci CTRL-R) pour la recompiler. Si la spécification contient des erreurs de syntaxe ou
si elle est insatisfaisable, un message d’erreur approprié (mais pas toujours très intuitif) est affiché.
Pour afficher les constantes de la spécification, il faut double-cliquer sur SETUP_CONSTANTS dans
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Figure 2.8: L’écran principal de ProB

Figure 2.9: Affichage de la valeur des constantes

la partie centrale intitulée Enabled Operations. ProB affiche alors les valeurs des constantes qu’il a
calculées pour satisfaire la formule de la clause PROPERTIES (voir figure 2.9). La figure 2.10 illustre
un message d’erreur quand la spécification est insatisfaisable. On peut aussi appeler l’évaluateur
de ProB, avec le (menu Analyse→Eval. . . , ou bien en double-cliquant n’importe où dans la fenêtre
State Properties. L’évaluateur peut évaluer n’importe quelle formule ou expression du langage en
utilisant la valeur actuelle des constantes (voir figure 2.11).
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...
& Parent = {

(p0,p1)
,(p0,p2)
,(p2,p6)

}
& Parent = {}
...

Figure 2.10: Spécification insatisfaisable

Figure 2.11: L’évaluateur d’expressions et de formules de ProB
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2.12 Exercices

1. Soit

• A = {0, 1},
• B = {a, b},
• C = B ∪ {c, d},
• D = {0 7→ a, 1 7→ b, 2 7→ c, 3 7→ d},
• E = {0 7→ c, 1 7→ d},
• F = {c 7→ 0, c 7→ 1, d 7→ 1}

Évaluez les expressions suivantes.

(a) Calculez A×B. Solution: {0 7→ a, 0 7→ b, 1 7→ a, 1 7→ b}
(b) Déterminez si les énoncés suivants sont vrais. Justifiez votre réponse

i. ∅ ∈ P(∅) Solution: Vrai
ii. ∅ ⊆ P(∅) Solution: Vrai
iii. ∅ ∈ A×B Solution: Faux
iv. ∅ ⊆ A×B Solution: Vrai
v. ∅ ∈ ∅ Solution: Faux
vi. ∅ ⊆ ∅ Solution: Vrai
vii. ∅ ⊆ {∅} Solution: Vrai
viii. ∅ ∈ {∅} Solution: Vrai
ix. 0 7→ a ∈ A×B Solution: Vrai
x. (0, a) ∈ A×B Solution: Vrai
xi. {0 7→ a, 1 7→ b} ∈ A×B Solution: Faux
xii. {0 7→ a, 1 7→ b} ⊆ A×B Solution: Vrai
xiii. {0 7→ a, 1 7→ b} ∈ A↔ B Solution: Vrai
xiv. {0 7→ a, 1 7→ b} ⊆ A↔ B Solution: Faux
xv. {0 7→ a, 1 7→ b} ∈ A 7→B Solution: Vrai
xvi. {0 7→ a, 1 7→ b} ∈ A→B Solution: Vrai
xvii. {0 7→ a} ∈ A→B Solution: Faux
xviii. {0 7→ a, 1 7→ b} ∈ A 7↣B Solution: Vrai
xix. {0 7→ a} ∈ A 7↣B Solution: Vrai
xx. {0 7→ a, 1 7→ a} ∈ A 7↣B Solution: Faux
xxi. {0 7→ a, 1 7→ a} ∈ A↣B Solution: Faux
xxii. {0 7→ a, 1 7→ b} ∈ A↣B Solution: Vrai
xxiii. {0 7→ a, 1 7→ b} ∈ A 7↠B Solution: Vrai
xxiv. {0 7→ a} ∈ A 7↠B Solution: Faux
xxv. {0 7→ a, 1 7→ b} ∈ A↠B Solution: Vrai
xxvi. {0 7→ a, 1 7→ b} ∈ A↣↠7↠ B Solution: Vrai
xxvii. {0 7→ a, 1 7→ b} ∈ A↣↠B Solution: Vrai

(c) Calculez les expressions suivantes (ie, en donnant les éléments de l’ensemble résultant)

95



i. {x | x ∈ P(A) ∧ 0 ∈ x} Solution:
{
{0}, {0, 1}

}
ii. A◁D Solution: {0 7→ a, 1 7→ b}
iii. dom(A◁D) Solution: {0, 1}
iv. ran(A◁D) Solution: {a, b}
v. A◁−D Solution: {(2 7→ c), (3 7→ d)}
vi. D ▷−B Solution: {(2 7→ c), (3 7→ d)}
vii. D ; E Solution: {}
viii. (D ; F ) Solution: {(2 7→ 0), (2 7→ 1), (3 7→ 1)}
ix. ((E ; F )−1 ;D) Solution: {0 7→ a, 1 7→ a, 1 7→ b}
x. (id(A) ;D) Solution: {0 7→ a, 1 7→ b}
xi. D ◁− E Solution: {(0 7→ c), (1 7→ d), (2 7→ c), (3 7→ d)}
xii. F [{c}] Solution: {0, 1}
xiii. Soit r ∈ 0..4↔ 0..4 et r = {(x, y) | x ∈ 0..3 ∧ y = x+ 1}; calculez r∗.

Solution:
{(0, 0), (0, 1), (0, 2), (0, 3), (0, 4), (1, 1), (1, 2), (1, 3), (1, 4),
(2, 2), (2, 3), (2, 4), (3, 3), (3, 4), (4, 4)}

xiv. {(x, y) | x ∈ 0..3 ∧ y ∈ 0..3 ∧ y = x+ 1}+
Solution: {(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3)}

2. Soient les définitions suivantes:

MACHINE ExerciceMathDiscrete_1

SETS
Personne={h1,h2,h3,h4,h5,f1,f2,f3,f4,f5,f6}

CONSTANTS NombrePair,Homme,Femme,Pere,Mere

PROPERTIES
NombrePair = {x | x : 1..12 & x mod 2 = 0}

& Homme={h1,h2,h3,h4,h5}
& Femme={f1,f2,f3,f4,f5,f6}
& Pere={h1|->h2,h1|->f2, h2|->h3}
& Mere={f1|->h2,f1|->f2, f2|->h4, f4|->f6, f5|->f6}

END

(a) Définissez l’ensemble Facteur qui contient les facteurs du nombre 12 (ie, x est un facteur
de y ssi il existe un nombre z tel que y = x∗z, ou, de manière équivalente, y mod x = 0).

(b) Définissez l’ensemble Premier qui contient l’ensemble des nombres premiers entre 2 et 12
(ie, un nombre x est premier ssi il est supérieur à 1 et ses seuls facteurs sont 1 et x).

(c) Définissez la constante s qui est égale à la somme des éléments de Premier.

(d) Définissez l’ensemble FacteurPremier qui contient seulement les facteurs premiers de 12.

(e) Définissez par compréhension l’ensemble Papa qui contient les personnes qui sont des
pères.
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(f) Définissez l’ensemble Papa2 qui contient les mêmes éléments que Papa, mais en utilisant
seulement des opérations sur les relations.

(g) Définissez par compréhension l’ensemble Fils qui contient les personnes qui sont des en-
fants de sexe masculin.

(h) Définissez par compréhension la relation GrandParent qui contient les couples x 7→ y telles
que x est un grand-parent de y.

(i) Définissez la relation GrandParent2 qui contient les mêmes éléments que GrandParent,
mais en utilisant seulement des opérations sur les relations.

(j) Définissez par compréhension la relation Conjoint qui contient des couples de personnes
qui sont des conjoints. On dit que x est un conjoint de y ssi x et y ont eu un enfant
ensemble.

(k) Définissez la relation Conjoint2 qui contient les mêmes éléments que Conjoint, mais en
utilisant seulement des opérations sur les relations.

(l) Définissez par compréhension la relation ConjointAsymetrique qui contient des couples de
personnes qui sont des conjoints, mais où une paire de personnes x et y apparait une
seule fois, càd que soit le couple (x, y), soit le couple (y, x) apparait, mais pas les deux.

(m) Définissez la relation Fraterie, dont les éléments sont des frères et sœurs (ie, des personnes
qui ont un parent en commun).

3. Utilisez le fichier prop-relation.mch pour répondre aux questions suivantes

(a) Examinez les définitions des propriétés dans prop-relation.mch. Pour chaque propriété,
choisissez des valeurs pour r et vérifiez que votre relation r satisfait la propriété.

(b) Vérifiez avec ProB les questions suivantes

i. Existe-t-il une relation qui n’est ni réflexive, ni irréflexive?
ii. Une relation asymétrique est-elle aussi une relation antisymétrique?
iii. Pour un ensemble fini S, est-ce que les propriétés bien fondée et acyclique sont

équivalentes?
iv. Pour un ensemble infini S, est-ce que les propriétés bien fondée et acyclique sont

équivalentes? (Vous ne pouvez tester cette question dans ProB, puisque S est infini;
ProB ne peut traiter "complètement" que des ensembles finis).

v. Existe-t-il une relation r qui est à la fois une relation d’ordre et une relation d’équivalence?
vi. En général, est-ce qu’une relation d’ordre est aussi une relation d’équivalence?
vii. Une relation peut-elle être à la fois symétrique et antisymétrique?

4. Soit

• R, l’ensemble des nombres réels.

• R+ = {x | x ∈ R ∧ x > 0}

Déterminez à quelle classe chaque fonction ci-dessous appartient.

(a) sin

(b) log

(c) λx.(x ∈ R | x2)
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(d) {x 7→ y | x ∈ R ∧ y ∈ R ∧ y =
√
x}

(e) succ

(f) λx.(x ∈ N | succ(x))
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5. Considérez le monde Tarski ci-dessous et le fichier suivant qui représente ce monde en utilisant
des relations.

https://marcfrappier.espaceweb.usherbrooke.ca/mat115/exercices/chap2/q5/Tarski.mch

Complétez les définitions demandées. Un objet est représenté par sa coordonnée dans plan,
c’est-à-dire un couple (x, y), où x est le numéro de colonne et y le numéro de ligne. La
coordonnée (0, 0) dénote la case située en bas à droite dans le monde. La relation Square
contient les coordonnées des carrés du monde; les autres types d’objets sont représentés de la
même manière. De même, la relation Small contient les objets qui sont petits.

6. Complétez la modélisation en B des prédicats de Tarski à partir du modèle ci-dessous. Codez
les formules de la question 5 dans ce modèle. Vous pouvez aussi coder n’importe quelle formule
du devoir 1 ou des exercices (1.7) du chapitre 1.

https://marcfrappier.espaceweb.usherbrooke.ca/mat115/exercices/chap2/q6/q6.mch
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7. Soit les ensembles suivants:

• Sigle : l’ensemble des sigles de cours de l’université

Sigle = {MAT115, IFT187, . . .}

• GroupeCours : l’ensemble des groupes cours donnée à l’UdeS durant une session.

GroupeCours ∈ Cours↔ N

GroupeCours = {MAT115 7→ 1,MAT115 7→ 2, IFT187 7→ 1, . . . }

• Local : l’ensemble des locaux de l’UdeS

Local = {D4-1021,D6-2034,D3-2018, . . .}

• Etudiant : l’ensemble des étudiants inscrits durant une session.

Etudiant = {e1, e2, e3, . . .}

• Professeur : l’ensemble des professeurs de l’UdeS.

Professeur = {e1, e2, e3, . . .}

• Plage : l’ensemble des plages horaires dans une semaine; on suppose que ces plages
horaires sont disjointes (ex: h1 = LU-8h30à9h20, h2 = LU-9h30à10h20, etc).

Plage = {h1, h2, h3, . . .}

Donner la classe la plus spécifique pour chacune des relations suivantes. Si la relation n’est
pas une fonction, représentez les contraintes additionnelles en logique du premier ordre pour
bien specifier chaque relation.

• r1 ∈ GroupeCours↔ Local : Donne le local associé à un groupe cours. On suppose
qu’un groupe cours se donne dans un seul local.
Solution: r1 ∈ GroupeCours→ Local

• r2 ∈ GroupeCours↔Professeur : Donne le professeur qui enseigne à un groupe cours.
Un professeur peut enseigner à plusieurs groupes cours durant une session. Tous les
professeurs doivent enseigner à au moins un groupe cours dans une session.
Solution: r1 ∈ GroupeCours↠ Professeur

• r3 ∈ GroupeCours↔ Etudiants : Donne les étudiants d’un groupe cours. Un étudiant
ne peut suivre plus de 5 cours dans une session. Un étudiant doit suivre au moins un
cours dans une session, vu qu’il est inscrit.
Solution: r3 ∈ GroupeCours↔ Etudiants ∧ ∀e · e ∈ ran(r3)⇒ card(r−1

3 [{e}]) ∈ 1..5

• r4 ∈ Sigle ↔ Professeur : Donne les professeurs qui enseigne les cours durant une
session. Il se peut qu’un cours ne soit pas donné.
Solution: r4 ∈ Sigle↔ Professeur ∧ ran(r4) = Professeur

• r5 ∈ GroupeCours↔ Plage : Donne la plage horaire d’un groupe cours. On suppose
qu’un groupe cours se donne sur une seule plage horaire.
Solution: r5 ∈ GroupeCours→ Plage
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• r6 ∈ GroupeCours↔ (Plage × Local) : Donne la plage horaire et le local d’un groupe
cours.
Solution: r6 ∈ GroupeCours↣ (Plage× Local)

• Soit e un étudiant et r7 = r3−1[{e}] : r7 donne les cours (sigles) suivi par l’étudiant e
dans une session.
Solution: r7 ∈ Sigle 7→ N

• Soit p un professeur et r8 = (r−1
1 ; r6)[{p}]. r8 donne les plages horaires et locaux d’un

professeurs dans une session. Un professeur ne peut pas enseigner deux groupes cours en
même temps.
Solution: r8 ∈ Plage 7→ Local
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Chapitre 3

Types de preuve

Dans ce chapitre, nous abordons différents types de preuves. Nous présentons tout d’abord les
preuves par induction (aussi appelée preuve par récurrence), qui permettent de prouver une formule
de la forme ∀x · x ∈ S ⇒ A, en utilisant une relation bien fondée sur S. Elle sont typiquement
utilisées pour les nombres naturels, mais aussi pour les ensembles et les structures de données
utilisées fréquemment en informatique, comme les arbres, les listes, ou tout autre objet, en utilisant
leur structure syntaxique, qui est naturellement inductive, comme relation bien fondée.

Nous illustrons ensuite le style classique de rédaction d’une preuve en langage naturel, qui est
une abstraction compacte d’un arbre de preuve tel que vu au chapitre 1. Les preuves écrites en
langage naturel sont fréquemment utilisées en mathématiques. Nous présentons ensuite le style de
preuve équationnel, qui consiste à formuler une suite d’équivalences, d’implications, d’égalités ou
d’inclusions, en utilisant à chaque étape des lois ou les définitions des objets manipulés.

3.1 Preuve par induction

La preuve par induction est une des règles les plus utilisées en mathématique. Elle fut formalisée
par Augustus De Morgan, Giuseppe Peano, Charles Sanders 1 et Richard Dedekind2.

3.1.1 Preuve par induction sur les naturels

Soit Nk les nombres naturels supérieurs ou égal à k, i.e., Nk = {y | y ∈ N∧ y ≥ k} pour k ∈ N. Soit
à prouver la formule

∀x · x ∈ Nk⇒A

par induction.

1. Preuve du cas de base. On fait la preuve pour la valeur minimale k de Nk (par exemple,
min(N1) = 1). Il faut donc prouver la formule suivante

A[x := k]

1Charles Sanders Peirce (1839–1914) est un philosophe, logicien et mathématicien américain. Dès 1886, il indique
que les opérations booléennes, qui sont à la base du fonctionnement des ordinateurs modernes, pourraient être
calculées par des circuits électriques.

2Julius Wilhelm Richard Dedekind (1831–1916) est un mathématicien allemand. Pionnier de l’axiomatisation de
l’arithmétique, il a proposé une définition axiomatique de l’ensemble des nombres entiers ainsi qu’une construction
rigoureuse des nombres réels à partir des nombres rationnels.
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A[x:=0]

…

( A[x:=x-1] ⇒ A )À prouver

Conséquences A[x:=1] A[x:=2]

x > 0

A[x:=3]

⇒

Figure 3.1: Le principe de preuve par induction

2. Preuve du cas d’induction (x > k), où on utilise l’hypothèse d’induction

A[x := x− 1] (HI)

pour prouver A. Pour ce faire, on cherche à ré-écrire A pour faire apparaître A[x := x− 1] et
utiliser l’hypothèse d’induction.

La figure 3.1 illustre le principe de preuve par induction.
Pour illustrer les preuves par induction, nous allons débuter par des théorèmes utilisant l’opérateur

de sommation «
∑

» . De manière informelle, on a
n∑

i=1

t

=
t[i := 1] + t[i := 2] + . . .+ t[i := n]

Dans une sommation
n∑

i=m

t, l’opérateur de sommation
∑

déclare la variable i, et i est une variable

quantifiée, exactement comme dans une quantification universelle; m est la borne inférieure de la
sommation, et n est la borne supérieure. Le symbole t est un terme où la variable i apparaît; c’est
le terme quantifié par la sommation. Par exemple, soit t = 2i− 1. On a

n∑
i=1

2i− 1

=
(2i− 1)[i := 1] + (2i− 1)[i := 2] + . . .+ (2i− 1)[i := n]

=
1 + 3 + . . .+ 2n− 1

Voici la définition formelle d’une sommation.

n > m ⇒
n∑

i=m

t =

(
n−1∑
i=m

t

)
+ (t[i := n]) (3.1)

n = m ⇒
n∑

i=m

t = (t[i := m]) (3.2)

n < m ⇒
n∑

i=m

t = 0 (3.3)
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Voici un exemple d’illustration d’une sommation.
3∑

i=1

i2

=
i2[i := 1] + i2[i := 2] + i2[i := 3]

=
12 + 22 + 32

=
14

Voici un premier exemple de preuve par induction. Nous allons prouver le théorème suivant par
induction.

Théorème 5

∀x · x ∈ N⇒
x∑

i=0

i =
x(x+ 1)

2

Preuve. Par induction. Soit

A ≡
x∑

i=0

i =
x(x+ 1)

2

Puisque S = N, min = 0.

Cas de base x = 0.

Montrons

A[x := 0] ≡
0∑

i=0

i =
0(0 + 1)

2

0∑
i=0

i

= ⟨ (3.2) ⟩
0

= ⟨ arithmétique ⟩
0(0 + 1)

2

Cas x > 0, en utilisant l’hypothèse d’induction

A[x := x− 1] ≡
x−1∑
i=0

i =
(x− 1)((x− 1) + 1)

2
=

(x− 1)x

2
(HI) (3.4)

et prouvons A.
x∑

i=0

i

= ⟨ (3.1). Cette étape permet de faire apparaitre le terme de gauche de (3.4), soit
x−1∑
i=0

i ⟩
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⌞

(
x−1∑
i=0

i

)
⌟+ x

= ⟨ Hypothèse d’induction (HI) ⟩
⌜(x− 1)x

2
⌝+ x

= ⟨ arithmétique: dénominateur commun ⟩
x2 − x

2
+

2x

2
= ⟨ arithmétique ⟩

x2 − x+ 2x

2
= ⟨ arithmétique ⟩

x2 + x

2
= ⟨ arithmétique ⟩

x(x+ 1)

2

□

Voici un autre exemple pour N1

Théorème 6

∀x · x ∈ N1⇒
x∑

i=1

(2i− 1) = x2

Preuve. Par induction. Soit

A ≡
x∑

i=1

(2i− 1) = x2

Cas de base x = 1 (car le nombre 1 est l’élément minimal de N1). Il faut donc prouver

A[x := 1] ≡
1∑

i=1

(2i− 1) = 12

Ce qui se prouve comme suit:

1∑
i=1

(2i− 1)

= ⟨ (3.2) ⟩
2− 1

= ⟨ arithmétique ⟩
1

= ⟨ arithmétique ⟩
12
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Cas x > 1. Hypothèse d’induction:

A[x := x− 1] ≡
x−1∑
i=1

(2i− 1) = (x− 1)2 (HI) (3.5)

On prouve A comme suit:
x∑

i=1

(2i− 1)

= ⟨ (3.1) ⟩

⌞

(
x−1∑
i=1

(2i− 1)

)
⌟+ (2x− 1)

= ⟨ Hypothèse d’induction (3.5) ⟩
⌜
⌞(x− 1)2⌟

⌝+ (2x− 1)
= ⟨ arithmétique ⟩

⌜(x2 − 2x+ 1)⌝+ (2x− 1)
= ⟨ arithmétique ⟩

x2

□

Voici une autre exemple à propos des exposants. Considérons les définitions suivantes de la
notion d’exposant sur les nombres naturels.

b0 = 1 (3.6)
n ∈ N1 ⇒ bn = bn−1b (3.7)

Théorème 7
∀x, y · x ∈ N ∧ y ∈ N⇒ bx+y = bxby

Cette formule contient deux variables quantifiées. On peut réécrire cette formule à l’aide des lois
(LP-37) et (LPO-26), comme suit.

∀x, y · x ∈ N ∧ y ∈ N⇒ bx+y = bxby

⇔ ⟨ (LP-37) ⟩
∀x, y · x ∈ N⇒ (y ∈ N⇒ bx+y = bxby)

⇔ ⟨ (LPO-26) ⟩
∀x · x ∈ N⇒ (∀y · y ∈ N⇒ bx+y = bxby)

On peut donc faire une induction sur cette formule pour x. La quantification sur y fera partie de
A.

Preuve. Par induction sur x seulement. Soit

A ≡ ∀y · y ∈ N⇒ bx+y = bxby

Cas de base x = 0 (car le nombre 0 est l’élément minimal de N). Il faut donc prouver

A[x := 0] ≡ ∀y · y ∈ N⇒ b0+y = b0by

Cette formule contient un quantificateur. On peut la prouver comme suit, avec les règles I∀ (voir
page 44) et I⇒ (voir page 36).
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⌈y ∈ N⌉[1]
...

b0+y = b0by
[I⇒][1]

y ∈ N⇒ b0+y = b0by
I∀∀y · y ∈ N⇒ b0+y = b0by

Il reste donc à prouver ce qui est en rouge, que nous prouvons comme suit.

b0by

= ⟨ (3.6) ⟩
1by

= ⟨ arithmétique ⟩
by

= ⟨ y = 0 + y ⟩
b0+y

Cas x > 0. Hypothèse d’induction:

A[x := x− 1] ≡ ∀y · y ∈ N⇒ b(x−1)+y = bx−1by (HI) (3.8)

Pour prouver A, qui contient aussi un quantificateur comme dans le cas de base, on utilise les règles
I∀ et I⇒, on suppose y ∈ N, et il reste à prouver

bx+y = bxby

Ce qui se prouve comme suit.

bx+y

= ⟨ arithmétique: x+ y = (x− 1) + (y + 1) ⟩
b(x−1)+(y+1)

On peut utiliser ici l’hypothèse d’induction (3.8). Pour ce faire, il suffit d’instancier (3.8) avec
y := y + 1, grâce à la règle d’inférence E∀ de la page 44 et la règle E⇒

y ∈ N
Arith.

y + 1 ∈ N
(HI) : (3.8)

E∀ avec [y := y + 1]
y + 1 ∈ N⇒ b(x−1)+(y+1) = bx−1by+1

[E⇒]
b(x−1)+(y+1) = bx−1by+1

et obtenir la déduction suivante
b(x−1)+(y+1) = bx−1by+1 (3.9)

de notre hypothèse d’induction, et de poursuivre notre preuve pour le cas x > 0.

b(x−1)+(y+1)

= ⟨ (3.9) ⟩
bx−1by+1

= ⟨ puisque y + 1 ∈ N1, (3.7) avec n := y + 1 donne by+1 = byb ⟩
bx−1byb

= ⟨ commutativité multiplication ⟩
bx−1bby

= ⟨ (3.7) et hypothèse x > 0 ⟩
bxby
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□

Voici un autre exemple avec les nombres de Fibonacci. Soient les définitions suivantes des nombres
de Fibonacci, désignés ici par Fx avec x ∈ N.

F0 = 0 (3.10)
F1 = 1 (3.11)

n > 1 ⇒ Fn = Fn−1 + Fn−2 (3.12)

Théorème 8
∀x, y · x ∈ N ∧ y ∈ N1 ⇒ Fx+y = Fx+1Fy + FxFy−1

Comme pour le théorème précédent, nous avons deux variables quantifiées. On peut réécrire cette
formule à l’aide des lois (LP-37) et (LPO-26), ce qui donne à prouver la formule suivante:

∀x · x ∈ N ⇒ (∀y · y ∈ N1 ⇒ Fx+y = Fx+1Fy + FxFy−1)

Preuve. Par induction. Soit

A ≡ ∀y · y ∈ N1 ⇒ Fx+y = Fx+1Fy + FxFy−1

Cas x = 0 (car le nombre 0 est l’élément minimal de N). Il faut donc prouver

A[x := 0] ≡ ∀y · y ∈ N1 ⇒ F0+y = F0+1Fy + F0Fy−1

Ce qui se prouve comme suit. Avec les règles I∀ et I⇒, on suppose y ∈ N1 et on prouve

F0+y = F0+1Fy + F0Fy−1.

Ce qui se prouve comme suit.

⌞F0+1⌟Fy + ⌞F0⌟Fy−1

= ⟨ (3.10) et (3.11) ⟩
⌜1⌝Fy + ⌜0⌝Fy−1

= ⟨ arithmétique ⟩
Fy

= ⟨ arithmétique: y = 0 + y ⟩
F0+y

Cas x > 0. Hypothèse d’induction:

A[x := x− 1] ≡ ∀y · y ∈ N1 ⇒ F(x−1)+y = F(x−1)+1Fy + F(x−1)Fy−1 (HI) (3.13)

Pour prouver A, on utilise les règles I∀ et I⇒ comme suit:

⌈y ∈ N1⌉[1]
...

Fx+y = Fx+1Fy + FxFy−1
[I⇒][1]

y ∈ N1⇒Fx+y = Fx+1Fy + FxFy−1 I∀∀y · y ∈ N1⇒Fx+y = Fx+1Fy + FxFy−1
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Il reste donc à prouver ce qui est en rouge:

Fx+y = Fx+1Fy + FxFy−1.

à partir de l’hypothèse y ∈ N1, ce qui se prouve comme suit. Typiquement, on commence avec
le terme le plus complexe et on essaie de le réécrire jusqu’à obtenir le terme le plus simple. En
suivant cette stratégie, nous devrions commencer avec le terme de droite (i.e., Fx+1Fy + FxFy−1)
et essayer d’y faire apparaitre l’hypothèse d’induction. Toutefois, cette stratégie ne fonctionne pas
ici (essayez-là pour le constater). Nous allons donc débuter avec le terme de gauche (i.e., Fx+y) et
essayer d’y faire apparaitre un des termes de l’hypothèse d’induction.

Fx+y

= ⟨ arithmétique: x+ y = (x− 1) + (y + 1) ⟩
F(x−1)+(y+1)

Remarquons que ce terme apparait presque dans (3.13). Pour l’obtenir, il suffit d’instancier (HI)
(soit (3.13)) avec y := y + 1, grâce à la règle d’inférence E∀ de la page 44. Puisque nous avons
supposé que y ∈ N1, on a donc y + 1 ∈ N1. On peut donc utiliser la règle E⇒ comme suit:

y ∈ N1
Arith.

y + 1 ∈ N1

(HI) : (3.13)
E∀ avec [y := y + 1]

y + 1 ∈ N1 ⇒F(x−1)+(y+1) = F(x−1)+1Fy+1 + F(x−1)F(y+1)−1
[E⇒]

F(x−1)+(y+1) = F(x−1)+1Fy+1 + F(x−1)F(y+1)−1

et obtenir la déduction suivante, après simplification des indices.

F(x−1)+(y+1) = FxFy+1 + F(x−1)Fy (3.14)

Poursuivons donc la preuve du cas d’induction, en utilisant (3.14).

⌞F(x−1)+(y+1)⌟
= ⟨ (3.14) ⟩

⌜Fx⌞Fy+1⌟+ Fx−1Fy
⌝

= ⟨ (3.12) ⟩

⌞Fx
⌜(Fy + Fy−1)⌝⌟+ Fx−1Fy

= ⟨ distributivité multiplication sur addition ⟩
⌜FxFy + ⌞FxFy−1

⌝+ Fx−1Fy⌟
= ⟨ commutativité addition ⟩

⌞FxFy + ⌜Fx−1Fy⌟+ FxFy−1
⌝

= ⟨ distributivité multiplication sur addition ⟩
⌜
⌞(Fx + Fx−1)⌟Fy

⌝+ FxFy−1

= ⟨ hyp. x > 0, donc x+ 1 > 1, (3.12) avec n := x+ 1 donne Fx+1 = Fx + Fx−1 ⟩
⌜Fx+1

⌝Fy + FxFy−1

□

3.1.2 Règle générale de preuve par induction

Voici la règle générale de preuve par induction. Soit S un ensemble et ≺ ∈ S↔S une relation bien
fondée.

(∀x · x ∈ S⇒A) ⇔ (∀x · x ∈ S⇒ ((∀y · y ∈ S ∧ y ≺ x⇒A[x := y])⇒A)) (3.15)
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Application aux nombres naturels avec ≺ := <.

(∀x · x ∈ N⇒A) ⇔ (∀x · x ∈ N⇒ ((∀y · y ∈ N ∧ y < x⇒A[x := y])⇒A)) (3.16)

Application aux sous-ensembles finis d’un ensemble S avec ≺ := ⊂.

(∀x · x ∈ F(S)⇒A) ⇔ (∀x · x ∈ F(S)⇒ ((∀y · y ∈ F(S) ∧ y ⊂ x⇒A[x := y])⇒A)) (3.17)

Notons que l’on peut aussi utiliser S ≺ S′⇔ card(S) < card(S′) pour les ensembles. Ce ne change
pas la difficulté de la preuve lorsqu’elle est faite à la main. Toutefois, les prouveurs automatisés,
comme ceux du langage B, travaillent plus facilement avec ⊂ qu’avec card(S) < card(S′).

3.1.3 Application de la règle générale d’induction aux naturels

Examinons comment cette règle peut être utilisée pour N. Supposons que nous voulons prouver une
formule de la forme

∀x · x ∈ N⇒A

La formule (3.16) nous indique qu’on peut la prouver en utilisant son côté droit, soit

∀x · x ∈ N⇒ ((∀y · y ∈ N ∧ y < x⇒A[x := y])⇒A)

Soit
B ≡ y ∈ N ∧ y < x

En utilisant la règle I∀, il reste à prouver

x ∈ N⇒ ((∀y · B ⇒A[x := y])⇒A)

En utilisant la règle d’introduction de l’implication (I⇒), on pose comme hypothèse

x ∈ N (3.18)

et on doit prouver
(∀y · B ⇒A[x := y])⇒A (3.19)

En utilisant la règle d’introduction de l’implication (I⇒), on pose comme hypothèse

∀y · B ⇒A[x := y] (HIG) (3.20)

et on prouve
A

La formule (3.20) est appelée l’hypothèse d’induction générale. Pour pouvoir utiliser cette hypothèse
afin de prouver A, il faut prouver B. Pour x = 0, l’hypothèse d’induction ne peut pas être utilisée,
car B[x := 0] ≡ y ∈ N ∧ y < 0 est fausse : il n’y a pas de valeur pour y qui puissent satisfaire
y ∈ N∧ y < 0, le nombre 0 n’ayant pas de prédécesseur dans N pour la relation « < » . Il faut donc
prouver la formule A pour le cas x = 0, et on peut prouver les autres cas (x > 0) avec l’hypothèse
d’induction. Cela justifie les deux cas que l’on retrouve dans une preuve par induction sur les
naturels. Nous utilisons donc une preuve par cas (E∨) avec la formule x = 0 ∨ x > 0, qui se déduit
facilement de l’hypothèse (3.18) (x ∈ N).

Voici un arbre de preuve qui illustre ces déductions. Ce qui reste à faire dans cette preuve est
en rouge. Ce sont les deux étapes de la preuve par d’induction, soit le cas de base avec x = 0 en
hypothèse, et le cas d’induction, avec A[x := x− 1] et x > 0 en hypothèse.
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⌈x ∈ N⌉[1]

x = 0 ∨ x > 0

⌈x = 0⌉[2]

...
A

⌈x ∈ N⌉[1] ⌈x > 0⌉[3]
Arith.B[y := x− 1]

⌈HIG⌉[4]
E∀ y:=x−1

B[y := x− 1]⇒A[x := x− 1]
[E⇒]

A[x := x− 1]

...
A

[E∨][2,3]A
[I⇒][4]

HIG ⇒A
[I⇒][1]

x ∈ N⇒ (HIG ⇒A)
[I∀]∀x · x ∈ N⇒ (HIG ⇒A)
(3.16)

∀x · x ∈ N⇒A

Illustrons cela sur la preuve du théorème 5.

Cas x = 0.
Puisque x = 0 , on peut remplacer x par 0 dans notre formule à prouver (i.e., A[x := 0]), il faut
donc prouver

0∑
i=0

i =
0(0 + 1)

2
.

Ce qui se prouve comme suit:

0∑
i=0

i

= ⟨ Définition de
∑
⟩

0
= ⟨ arithmétique ⟩

0(0 + 1)

2

Cas x > 0. Il faut prouver
x∑

i=0

i =
x(x+ 1)

2
(3.21)

en utilisant l’hypothèse d’induction générale (3.20). Nous l’utilisons en l’instanciant avec y := x−1
avec la règle E∀ (

∀y · y ∈ N ∧ y < x⇒
∑y

i=0 i = y(y+1)
2

)
[E∀] avec y := x− 1(

x− 1 ∈ N ∧ x− 1 < x⇒
∑x−1

i=0 i = (x−1)((x−1)+1)
2

)
Puisque que nous avons x > 0, alors x− 1 ∈ N∧ x− 1 < x est vrai. Avec la règle E⇒, on peut donc
conclure

x−1∑
i=0

i =
(x− 1)((x− 1) + 1)

2
(HI) (3.22)

ce qui est notre hypothèse d’induction générale (3.20) instanciée avec y := x−1, que nous identifions
par (HI). Nous avons maintenant ce qu’il faut pour faire la preuve de (3.21).
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x∑
i=0

i

= ⟨ (3.1) ⟩(
x−1∑
i=0

i

)
+ x

= ⟨ Hypothèse d’induction (3.22) ⟩
(x− 1)((x− 1) + 1)

2
+ x

= ⟨ arithmétique ⟩
. . .

= ⟨ arithmétique ⟩
x(x+ 1)

2

Ce qui complète la preuve. La règle de preuve donnée à la section 3.1.1 est donc une application
particulière de la règle générale de preuve par induction. □

3.1.4 Plusieurs cas de base sur les naturels

Voici un dernier théorème sur les nombres de Fibonacci. Soit

ϕ =
1 +
√
5

2
(3.23)

communément appelé le nombre d’or. Ce nombre satisfait la propriété suivante:

ϕ2 = ϕ+ 1 (3.24)

De plus, il est relié aux nombres de Fibonacci par le théorème suivant.

Théorème 9
∀x · x ∈ N1⇒Fx ≤ ϕx−1

On peut prouver par induction ce théorème, mais on observera une particularité par rapport aux
preuves précédentes : il faudra prouver deux cas de base plutôt qu’un seul.

Preuve. Par induction. Soit
A ≡ Fx ≤ ϕx−1

Cas x = 1 (car le nombre 1 est l’élément minimal de N1). Il faut donc prouver

A[x := 1] ≡ F1 ≤ ϕ1−1

ce qui se prouve comme suit:

F1

= ⟨ (3.11) ⟩
1

= ⟨ ϕ0 = 1 ⟩
ϕ1−1
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Cas x > 1. Hypothèse d’induction:

A[x := x− 1] ≡ Fx−1 ≤ ϕx−2 (HI) (3.25)

Preuve de A

Fx

= ⟨ hyp. x > 1, (3.12) ⟩
Fx−1 + Fx−2

≤ ⟨ (3.25) ⟩
ϕx−2 + Fx−2

Nous avons instancié l’hypothèse d’induction avec x := x − 1, ce qui nous permet de l’appliquer
au premier terme Fx−1. Par contre, nous ne pouvons l’utiliser pour le deuxième terme Fx−2, car
B[x := x − 2] est fausse pour x = 2 dans (3.20), car nous n’avons que x > 1 en hypothèse. Nous
allons donc faire une sous-preuve par cas, avec x = 2 ∨ x > 2.

Cas x = 2. Il faut prouver
A[x := 2] ≡ F2 ≤ ϕ2−1

Ce qui se prouve comme suit:

F2

= ⟨ (3.12) ⟩
F0 + F1

= ⟨ (3.10) et (3.11) ⟩
0 + 1

< ⟨ par (3.23), ϕ = 1, 6180339887499 ⟩
ϕ

= ⟨ arithmétique ⟩
ϕ2−1

Cas x > 2. On peut instancier l’hypothèse d’induction générale (3.20) avec y := x − 2, car x > 2
entraine que x − 2 ∈ N1 ∧ x − 2 < x, ce qui donne comme deuxième application de l’hypothèse
d’induction

A[x := x− 2] ≡ Fx−2 ≤ ϕx−3 (HI) (3.26)

On prouve A comme suit.

Fx

= ⟨ hyp. x > 2, (3.12) ⟩
Fx−1 + Fx−2

≤ ⟨ (3.25) et (3.26) ⟩
⌞ϕ

x−2
⌟+ ϕx−3

= ⟨ hyp. x > 2, (3.7) entraine ϕx−2 = ϕx−3ϕ ⟩
⌜ϕx−3ϕ⌝+ ϕx−3

= ⟨ distributivité ⟩
ϕx−3(ϕ+ 1)

= ⟨ (3.24): ϕ+ 1 = ϕ2 ⟩
ϕx−3ϕ2

= ⟨ théorème 7 ⟩
ϕx−1
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□

3.1.4.1 Schéma général de preuve par induction sur les naturels

On constate avec le théorème 9 que si on veut instancier l’hypothèse d’induction générale avec
x := x− 2, il faut ajouter un cas de base avec x := k+ 1 pour une preuve sur Nk. Voici un schéma
de preuve plus général sur les naturels, mais qui est moins fréquemment utilisé.

Soit la formule ∀x · x ∈ Nk⇒A à prouver par induction.

1. Déterminer le cas d’induction (x > j)

2. Prouver les cas de bases, c’est-à-dire les éléments de k..j; c-à-d prouver A[x := i] pour chaque
i ∈ k..j.

3. Pour chaque i ∈ k..j, instancier l’hypothèse d’induction

A[x := x− 1− (i− k)]

et prouver A pour le cas x > j.

3.1.5 Preuve par induction sur d’autres structures

3.1.5.1 Preuve par induction sur les ensembles

La règle générale de preuve par induction peut être utilisée pour prouver des propriétés sur les
ensembles finis, lorsqu’on l’instancie avec ≺ := ⊂, ce qui donne la règle (3.17). Pour l’illustrer, nous
prouvons le théorème suivant.

Théorème 10 Soit S un ensemble.

∀x · x ∈ F(S)⇒ card(P(x)) = 2card(x)

Preuve. Par induction. Soit
A ≡ card(P(x)) = 2card(x)

Cas de base : x = {}
Il faut prouver

A[x := {}] ≡ card(P({})) = 2card({})

card(P({}))
=

card({{}})
=

1
=

20

=

2card({})
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Cas d’induction : x ̸= {}

On pose comme hypothèse d’induction l’hypothèse d’induction générale (HIG)

∀y · y ∈ P(S) ∧ y ⊂ x⇒A[x := y] (3.27)

Puisque x ̸= {}, soit z un élément quelconque de x. Soit

x0 = x− {z}.

On a donc x0 ⊂ x. Puisque x0 ⊂ x, on peut instancier (3.27) avec y := x0, ce qui donne notre
hypothèse d’induction instanciée.

A[x := x0] ≡ card(P(x0)) = 2card(x0) (HI)

Soit T l’ensemble des sous-ensembles de x qui ne contiennent pas z.

T = {y | y ⊆ x ∧ z ̸∈ y} = P(x0) (3.28)

Soit U l’ensemble des sous-ensembles de x qui contiennent z.

U = {y | y ⊆ x ∧ z ∈ y}

Par définition de T et U , on a
P(x) = T ∪ U (3.29)

et
T ∩ U = {} (3.30)

On note que
card(x0) = card(x)− 1 (3.31)

Considérons les fonctions f et g suivantes.

f ∈ T → U ∧ g ∈ U → T

f(t) = t ∪ {z} ∧ g(u) = u− {z}

Puisque f ; g = id(T ) et g ; f = id(U), on a que f ∈ T ↣↠ U et g = f−1 (vous devrez prouver cette
loi en devoir). La loi suivante établit un lien entre bijection et cardinalité.

(∃f · f ∈ A↣↠B) ⇒ card(A) = card(B) (3.32)

Donc,
card(T ) = card(U) (3.33)

Finalement, la loi suivante sera utile pour calculer la cardinalité d’une union.

card(A ∪B) = card(A) + card(B)− card(A ∩B) (3.34)

Nous avons maintenant tout ce qu’il faut pour prouver le cas d’induction.
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card(P(x))
= ⟨ (3.29) ⟩

card(T ∪ U)
= ⟨ (3.34) ⟩

card(T ) + card(U)− card(T ∩ U)
= ⟨ (3.30) ⟩

card(T ) + card(U)− card({})
= ⟨ card({}) = 0 ⟩

card(T ) + card(U)
= ⟨ (3.33) ⟩

card(T ) + card(T )
= ⟨ arithmétique ⟩

2 card(T )
= ⟨ (3.28) ⟩

2 card(P(x0))
= ⟨ (HI) ⟩

2 2card(x0)

= ⟨ (3.31) ⟩
2 2card(x)−1

= ⟨ Théorème 7 ⟩
2card(x)

□

3.1.5.2 Preuve par induction sur les arbres

On peut aussi utiliser la preuve par induction pour prouver des propriétés sur des structures définies
inductivement. Considérez les définitions suivantes de l’ensemble T des arbres binaires. Soit E un
ensemble (habituellement appelé l’ensembles des étiquettes des noeuds de l’arbre).

1. ∅ ∈ est un arbre binaire (il dénote l’arbre vide).

2. Si e ∈ E, g ∈ T et d ∈ T , alors ⟨e, g, d⟩ ∈ T est un arbre d’étiquette e, avec g comme
sous-arbre de gauche et d comme sous-arbre de droite.

La hauteur h(t) d’un arbre t est définie comme suit.

h(∅) = 0 (3.35)

h(⟨e, g, d⟩) = 1 +max({h(g), h(d)}) (3.36)

On définit la relation < sur les arbres, où t1 < t2 ssi t1 est un sous-arbre propre de t2, i.e.,

g < ⟨e, g, d⟩ ∧ d < ⟨e, g, d⟩ (3.37)

Finalement, le nombre de noeuds card(t) d’un arbre t est défini comme suit:

card(∅) = 0 (3.38)

card(⟨e, g, d⟩) = card(g) + card(d) + 1 (3.39)
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Théorème 11
∀x · x ∈ T ⇒ card(x) ≤ 2h(x) − 1

Preuve. Par induction. Soit
A ≡ card(x) = 2h(x) − 1

Cas de base : x = ∅
card(∅) = 0 = 20 − 1 = 2h(∅) − 1

Cas d’induction: x = ⟨e, g, d⟩. On pose comme hypothèse d’induction

∀y · y ∈ T ∧ y < x⇒A[x := y] (HI) (3.40)

Puisque g < x et d < x, on peut instancier (3.40) comme suit

A[x := g] ≡ card(g) ≤ 2h(g) − 1 (3.41)

A[x := d] ≡ card(d) ≤ 2h(d) − 1 (3.42)

card(⟨e, g, d⟩)
= ⟨ (3.39) ⟩

card(g) + card(d) + 1
≤ ⟨ (3.41), (3.42) ⟩

2h(g) − 1 + 2h(d) − 1 + 1
≤ ⟨ soit i = max({h(d), h(g)}) ⟩

2i − 1 + 2i − 1 + 1
= ⟨ i = h(x)− 1 ⟩

2h(x)−1 − 1 + 2h(x)−1 − 1 + 1
= ⟨ Arithmétique ⟩

2(2h(x)−1)− 1
= ⟨ Théorème 7 ⟩

2h(x) − 1

□

Comme pour les ensembles, on peut utiliser la relation bien-fondée x ≺ y⇔ h(x) < h(y) sur les
arbres. Toutefois, comme indiqué pour les ensembles, la relation x est un sous-arbre propre de y
est plus facile à utiliser avec les prouveurs automatisés.

3.1.6 Preuve de la règle générale de preuve par induction

Rappelons la règle générale de preuve par induction (3.15). Soit S un ensemble et ≺ ∈ S↔ S une
relation bien fondée.

(∀x · x ∈ S⇒A) ⇔ (∀x · x ∈ S⇒ ((∀y · y ∈ S ∧ y ≺ x⇒A[x := y])⇒A)) (3.15)

Cette formule est de la forme C⇔D. De par la règle d’inférence I⇔, il faut prouver C⇒D et D⇒C.
La preuve de C ⇒ D est triviale, puisque A est en hypothèse. La preuve de D ⇒ C représente la
principale difficulté. La preuve se fait par contradiction comme suit. Soit

B ≡ ∀y · y ∈ S ∧ y ≺ x⇒A[x := y]
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C ≡ ∀x · x ∈ S⇒A

D ≡ ∀x · x ∈ S⇒ (B ⇒A)

La preuve par contradiction a la structure suivante:

⌈D⌉[1] ⌈¬C⌉[2]
...
⊥

[ConDict][2]C
[I⇒][1]D⇒ C

Ré-écrivons ¬C

¬C
⇔ ⟨ (LPO-11),(LP-25) ⟩
∃x · x ∈ S ∧ ¬A

De ¬C, on peut déduire qu’il existe des valeurs de x pour lesquelles A est fausse. Soit T l’ensemble
de ces valeurs.

T = {x | x ∈ S ∧ ¬A}

Puisque T est un sous-ensemble non-vide de S et que ≺ est bien fondée, alors, par définition de
relation bien fondée, il existe au moins une valeur minimale x0 dans T et ¬A[x := x0]. La preuve
par contradiction se fera avec la formule A[x := x0].

⌈¬C⌉[1]
...

¬A[x := x0]

⌈D⌉[2] ⌈¬C⌉[1]
...

A[x := x0]

⊥
[ConDict][1]C

[I⇒][2]D⇒ C
Voic l’arbre de preuve (simplifié) de ¬A[x := x0].

¬C (LPO-11), (LP-25)
∃x · x ∈ S ∧ ¬A

définition de T

T ̸= {}
≺ est bien fondée

x0 ∈ min(T )
définition de T

¬A[x := x0]

Voici l’arbre de preuve (simplifié) de A[x := x0], afin de contredire ¬A[x := x0].

Voir arbre P1

B[x := x0]⇒A[x := x0]

Voir arbre P2

B[x := x0]

A[x := x0]

Arbre de preuve P1
¬C

T ̸= {}
x0 ∈ min(T )

x0 ∈ S

D
[E∀]D[x := x0]

x0 ∈ S⇒ (B[x := x0]⇒A[x := x0])

B[x := x0]⇒A[x := x0]
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Arbre de preuve P2

¬C
déf. C et T

T ̸= {}
≺ bien fondée

x0 ∈ min(T )

⌈y ∈ S ∧ y ≺ x0⌉[1]
[E∧2]y ≺ x0

⌈¬A[x := y]⌉[2]
déf. T

y ∈ T
déf. T

x0 ̸∈ min(T )
[E¬]⊥

[I¬][2]A[x := y]
[I⇒][1]

y ∈ S ∧ y ≺ x0⇒A[x := y]
[I∀]∀y · y ∈ S ∧ y ≺ x0⇒A[x := y]
déf. B

B[x := x0]

□

3.2 Exprimer une preuve en langage naturel

Les arbres de preuves sont très utiles pour comprendre la structure d’une preuve et la justifier, mais
ils sont pénibles à écrire, tant à la main qu’en utilisant un traitement de texte. Les mathématiciens
utilisent généralement le langage naturel pour décrire un arbre de preuve. Voici les différents cas de
figure pour écrire une preuve « en français » , tout en étant très rigoureux.

3.2.1 A⇒B - Implication

Soit à prouver une formule de la forme
A⇒B

On décrira cette preuve comme suit:

Supposons A et montrons B. . . . (comment prouver B) . . .

Cela découle de la règle de preuve I⇒.

3.2.2 A⇔B - Équivalence

Soit à prouver une formule de la forme
A⇔B

On décrira cette preuve comme suit:

Montrons A⇒B et ensuite montrons B ⇒A. . . .

Cela découle de la règle de preuve I⇔.

3.2.3 A ∧ B - Conjonction

Soit à prouver une formule de la forme
A ∧ B

On décrira cette preuve comme suit:

Montrons A et montrons ensuite B.
. . . (comment prouver A) . . . .
. . . (comment prouver B) . . .

Cela découle de la règle de preuve I∧.
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3.2.4 Preuve par contradiction

Soit à prouver une formule A (ou bien ¬A). On décrira cette preuve comme suit:

Preuve par contradiction. Supposons ¬A (ou bien A). . . . (comment obtenir une con-
tradiction) . . .

Cela découle des règles de preuve I¬ et E¬, et la contradiction se prouve avec la règle I⊥.

3.2.5 Preuve par contraposition (contraposée)

Soit à prouver une formule A⇒B. On décrira cette preuve comme suit:

Preuve par contraposition. Supposons ¬B. Montrons ¬A. . . . (comment prouver ¬A)
. . .

Cela découle de la loi (LP-26).

3.2.6 Preuve par cas

Soit à prouver une formule C en utilisant la règle E∨ sur une formule A∨B disponible en hypothèse,
ou bien déduite des hypothèses. On décrira cette preuve comme suit:

Preuve de C par cas sur A ∨ B.
Cas A. . . . (comment prouver C) . . .
Cas B. . . . (comment prouver C) . . .

On utilise souvent la loi du tiers exclu (LP-20) pour distinguer les cas.

3.2.7 ∀ - Quantification universelle

Soit à prouver une formule de la forme
∀x · A

On décrira cette preuve comme suit:

Soit x . . . (comment prouver A) . . .

Tel qu’indiqué dans la règle de preuve I∀ (voir page 44), la preuve de A ne doit rien supposer à
propos de x; toutes les hypothèses qui mentionnent x proviendront de la preuve de A et seront
déchargées.

Les quantifications universelles sont généralement de la forme

∀x · x ∈ S⇒A

On décrira cette preuve comme suit:

Soit x ∈ S . . . (comment prouver A) . . .

Cela se justifie par la règle d’introduction de l’implication I⇒ qui permet de mettre x ∈ S en hy-
pothèse, et de décharger cette hypothèse. Il y a parfois plusieurs variables quantifiées, par exemple,

∀(x, y, z) · x ∈ S ∧ y ∈ S ∧ z ∈ S⇒A

On décrira cette preuve comme suit:

Soit x, y, z ∈ S . . . (comment prouver A) . . .
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3.2.8 ∃ - Quantification existentielle

Soit à prouver une formule de la forme
∃x · A

On décrira cette preuve comme suit:

Montrons A[x := t]. . . . (comment prouver A[x := t]) . . .

où t est un terme représentant une valeur de x. Tel qu’indiqué dans la règle de preuve I∃ (voir page
44), la preuve de A[x := t] ne doit rien supposer à propos de x. Aucune hypothèse de la preuve
de A[x := t] ne peut mentionner x; les hypothèses doivent porter sur t. Entre autres, t ne peut
contenir x.

3.2.9 Illustration d’une preuve en langage naturel

Voici un théorème à prouver.

Théorème 12 Soit A,B des ensembles.

f ∈ A→B ∧ g ∈ B→A ∧ f ; g = id(A) ∧ g ; f = id(B) (3.43)
⇒ (3.44)

f ∈ A↣↠B (3.45)

Nous utiliserons les définitions suivantes d’injection et de surjection, pour simplifier les preuves et
pour illustrer différents cas de figure.

f ∈ A↣B ⇔ dom(f) = A ∧ ∀(x, y) · (x ∈ A ∧ y ∈ A⇒ (f(x) = f(y)⇒ x = y)) (3.46)
f ∈ A↠B ⇔ ∀x · (x ∈ B⇒∃y · y ∈ A ∧ f(y) = x) (3.47)

Voici les arbres de preuves de ce théorème.
Soit C ≡ (3.43).

P1

f ∈ A↣B

P2

f ∈ A↠B
def. ↣↠

f ∈ A↣↠B

C ⇒ f ∈ A↣↠B

Voici l’arbre de preuve P1.

⌈x ∈ A ∧ y ∈ A⌉[1] ⌈f(x) = f(y)⌉[2] ⌈C⌉[3]

...
x = y

[I⇒][2]
f(x) = f(y)⇒ x = y

[I⇒][1]
x ∈ A ∧ y ∈ A⇒ (f(x) = f(y)⇒ x = y)

[I∀]∀(x, y) · (x ∈ A ∧ y ∈ A⇒ (f(x) = f(y)⇒ x = y))
(3.46)

f ∈ A↣B

P1

Voici l’arbre de preuve P2.
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. . .
. . . ∈ A

. . .
f(. . .) = x

[I∧]
. . . ∈ A ∧ f(. . .) = x

I∃[y := . . .]

∃y · y ∈ A ∧ f(y) = x
[I⇒]

x ∈ B⇒∃y · y ∈ A ∧ f(y) = x
[I∀]∀x · x ∈ B⇒∃y · y ∈ A ∧ f(y) = x
(3.47)

f ∈ A↠B

P2

Cette preuve se décrit en langue naturelle comme suit. Elle sera à compléter en devoir ou en
exercices, d’où la présence de parties à compléter, identifiées par les « . . . » .

Supposons (3.43). Montrons f ∈ A↣↠B à partir de (3.46) et (3.47).
Preuve du côté droit de (3.46). Puisque f ∈ A→ B, alors dom(f) = A par définition de A→ B.
Soit x, y ∈ A et supposons f(x) = f(y), montrons x = y.

f(x) = f(y)
⇒ ⟨ . . . ⟩

. . .
⇒ ⟨ . . . ⟩

x = y

Preuve du côté droit de (3.47). Soit x ∈ B. Posons y := . . . et montrons y ∈ A ∧ f(y) = x.

(3.43)
⇒ ⟨ . . . ⟩

. . .
⇒ ⟨ . . . ⟩

. . . ∈ A

(3.43)
⇒ ⟨ . . . ⟩

. . .
⇒ ⟨ . . . ⟩

f(. . .) = x

□

3.3 Preuve dans le style équationnel

Plusieurs théorèmes se prouvent en utilisant simplement les définitions et les lois de la logique. Par
exemple, un théorème de la forme n1 = n2, ou bien n1 ≤ n2, se prouve souvent facilement par une
suite d’égalités ou d’inégalités où on applique les lois de l’arithmétique, dans le style suivant:

n1

=
. . .
=

n2

ou bien

n1

=
. . .
≤
. . .
=

n2
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La même stratégie s’applique pour des égalités ou des inclusions sur les ensembles, par exemple
E1 = E2 ou E1 ⊆ E2. Une stratégie de preuve typique pour les mathématiques discrètes consiste
à ré-écrire l’ensemble E1 sous forme d’un ensemble par compréhension en utilisant les définitions
des opérations apparaissant dans E1 et E2. Voici un premier exemple de théorème à prouver en
utilisant les définitions.

Théorème 13 Soit r1, r2, r3 ∈ S↔ S des relations sur un ensemble S.

r1 ; (r2 ∩ r3) ⊆ (r1 ; r2) ∩ (r1 ; r3) (3.48)

Preuve.
Montrons que la partie de gauche est incluse dans la partie de droite.

⌞r1 ; (r2 ∩ r3)⌟
= ⟨ Déf. « ; » ⟩

⌜{x 7→ y | ∃z · x 7→ z ∈ r1 ∧ z 7→ y ∈ (⌞r2 ∩ r3⌟)}⌝

Dans cette étape, nous avons simplement appliqué la définition de « ; » telle que donnée au
tableau 2.7. La prochaine étape consiste à ré-écrire r2 ∩ r3 en utilisant la définition de «∩ » du
tableau 2.5.

= ⟨ déf. ∩ ⟩
{x 7→ y | ∃z · x 7→ z ∈ r1 ∧ ⌞z 7→ y ∈ ⌜{z 7→ y | z 7→ y ∈ r2 ∧ z 7→ y ∈ r3}⌝⌟}

= ⟨ (LE-5) ⟩
{x 7→ y | ∃z · x 7→ z ∈ r1 ∧ ⌜z 7→ y ∈ r2 ∧ z 7→ y ∈ r3⌝}

Ces deux étapes survenant fréquemment et étant particulièrement fastidieuses, nous les combinerons
en une seule étape dans les preuves. Comme (LE-5) est toujours utilisé dans ces étapes où on
remplace un opérateur par sa définition à l’intérieur d’un autre ensemble, on peut l’omettre dans la
justification, par souci de simplicité.

= ⟨ déf. ∩ ⟩
{x 7→ y | ∃z · ⌞x 7→ z ∈ r1⌟ ∧ z 7→ y ∈ r2 ∧ z 7→ y ∈ r3}

Poursuivons.

= ⟨ (LP-5) ⟩
{x 7→ y | ∃z · ⌜x 7→ z ∈ r1 ∧ ⌞x 7→ z ∈ r1⌝ ∧ z 7→ y ∈ r2⌟ ∧ z 7→ y ∈ r3}

= ⟨ (LP-7) ⟩
{x 7→ y | ⌞∃z⌟ · x 7→ z ∈ r1 ∧ ⌜z 7→ y ∈ r2 ∧ x 7→ z ∈ r1⌝ ∧ z 7→ y ∈ r3}

⊆ ⟨ (LPO-19),(LE-3) ⟩
{x 7→ y | ⌞(⌜∃z⌝ · x 7→ z ∈ r1 ∧ z 7→ y ∈ r2)⌟ ∧ ⌞(

⌜∃z⌝ · x 7→ z ∈ r1 ∧ z 7→ y ∈ r3)⌟}
= ⟨ déf. « ; » ⟩

⌞{x 7→ y | ⌜x 7→ y ∈ r1 ; r2⌝ ∧ ⌜x 7→ y ∈ r1 ; r3⌝}⌟
= ⟨ déf. ∩ ⟩

⌜r1 ; r2 ∩ r1 ; r3⌝

□
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On peut aussi faire cette preuve en utilisant la définition de l’inclusion, c’est-à-dire

S ⊆ T ⇔ ∀x · (x ∈ S⇒ x ∈ T ) (3.49)

Pour prouver l’inclusion S ⊆ T , il suffit de prouver x ∈ S⇒ x ∈ T pour un x quelconque. Voici la
preuve du théorème 13 en utilisant (3.49).

⌞x 7→ y ∈ r1 ; (r2 ∩ r3)⌟
⇔ ⟨ Déf. « ; » ⟩

⌜∃z · x 7→ z ∈ r1 ∧ ⌞z 7→ y ∈ (r2 ∩ r3)⌟
⌝

⇔ ⟨ déf. ∩ ⟩
∃z · ⌞x 7→ z ∈ r1⌟ ∧ ⌜z 7→ y ∈ r2 ∧ z 7→ y ∈ r3⌝

⇔ ⟨ (LP-5) ⟩
∃z · ⌜x 7→ z ∈ r1 ∧ ⌞x 7→ z ∈ r1⌝ ∧ z 7→ y ∈ r2⌟ ∧ z 7→ y ∈ r3

⇔ ⟨ (LP-7) ⟩

⌞∃z⌟ · x 7→ z ∈ r1 ∧ ⌜z 7→ y ∈ r2 ∧ x 7→ z ∈ r1⌝ ∧ z 7→ y ∈ r3
⇒ ⟨ (LPO-19) ⟩

⌞(
⌜∃z⌝ · x 7→ z ∈ r1 ∧ z 7→ y ∈ r2)⌟ ∧ ⌞(

⌜∃⌝z · x 7→ z ∈ r1 ∧ z 7→ y ∈ r3)⌟
⇔ ⟨ déf. « ; » ⟩

⌞
⌜x 7→ y ∈ r1 ; r2⌝ ∧ ⌜x 7→ y ∈ r1 ; r3⌝⌟

⇔ ⟨ déf. ∩ ⟩
⌜x 7→ y ∈ r1 ; r2 ∩ r1 ; r3⌝

Cette preuve comprend le même nombre d’étapes que la preuve précédente, mais les lignes sont plus
courtes, vu qu’on utilise seulement les prédicat définissant les ensembles de la preuve précédente; la
partie {x 7→ y | . . .} est absente.

Voici un autre exemple utilisant l’opérateur ran, qui extrait un ensemble d’une relation. Voici
un premier exemple de théorème à prouver en utilisant les définitions.

Théorème 14 Soit r1, r2 ∈ S↔ S des relations sur un ensemble S.

ran(r1 ; r2) ⊆ ran(r2) (3.50)

Preuve.
Montrons que la partie de gauche est incluse dans la partie de droite.

⌞ ran(r1 ; r2)⌟
= ⟨ Déf. ran ⟩

⌜{x | ∃y · ⌞y 7→ x ∈ r1 ; r2⌟}⌝
= ⟨ Déf. « ; » ⟩
{x | ∃y · ⌜∃z · ⌞y 7→ z ∈ r1⌟ ∧ z 7→ x ∈ r2⌝}

⊆ ⟨ E∧1, (LE-3) ⟩
{x | ⌞∃y⌟ · ∃z · z 7→ x ∈ r2}

= ⟨ (LPO-32) ⟩
{x | ∃z · z 7→ x ∈ r2}

= ⟨ Déf. ran ⟩
ran(r2)

□
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Théorème 15 Soit r1, r2 ∈ S↔ S des relations sur un ensemble S et T ⊂ S.

(T ◁ r1) ; r2 = T ◁ (r1 ; r2) (3.51)

Preuve.
Montrons que la partie de gauche est égale à la partie de droite.

(T ◁ r1) ; r2
= ⟨ Déf. « ; » ⟩
{x 7→ y | ∃z · x 7→ z ∈ T ◁ r1 ∧ z 7→ y ∈ r2}

= ⟨ Déf. ◁, (LE-5) ⟩
{x 7→ y | ∃z · x ∈ T ∧ x 7→ z ∈ r1 ∧ z 7→ y ∈ r2}

= ⟨ (LPO-28) ⟩
{x 7→ y | x ∈ T ∧ ∃z · x 7→ z ∈ r1 ∧ z 7→ y ∈ r2}

= ⟨ Déf. « ; » ⟩
{x 7→ y | x ∈ T ∧ x 7→ y ∈ r1 ; r2}

= ⟨ Déf. ◁ ⟩
T ◁ (r1 ; r2)

□

3.4 La preuve de correction de programmes séquentiels

Dans cette section, nous illustrons très simplement la preuve de correction de programmes séquen-
tiels. Nous utilisons le langage de programmation élémentaire suivant, qui suffit pour illustrer les
concepts.

• skip : l’instruction qui ne fait rien, c’est-à-dire quelle ne modifie aucune variable du pro-
gramme. Elle est utilisée pour les conditionnelles sans else.

• x := E : l’affectation de la valeur E à la variable x.

• P1;P2 : la séquence, soit l’exécution de P1 suivie de P2.

• if C then P1 else P2 end : la conditionnelle.

• while C do P end : la boucle.

3.4.1 La spécification d’un programme

Une spécification est une paire de formules pre et post, respectivement appelées la précondition et
la postcondition. Elle est notée

Spec(pre, post)

L’expression
Spec(pre, post) ⊑ P

indique que le programme P est correct par rapport à la spécification Spec(pre, post). Cela signifie
que si le programme P démarre dans un état où pre est vrai, alors il termine dans un état où post
est vrai. Elle est définie comme suit:

Spec(pre, post) ⊑ P ⇔ (pre⇒ wp(P, post)) (3.52)
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wp(P,A) A
P

états initiaux états finaux

pre
pre

wp(P,post)

postP

Spec(pre,post)   ⊑ P

Figure 3.2: Illustration de wp et de correction

Cette définition utilise l’opérateur wp(P,A), qui dénote la precondition la plus faible telle que
l’exécution de P termine dans un état final satisfaisant A. Cet opérateur est appelé weakest pre-
condition. Il a été défini par E.W.D. Dijkstra en 1975, en étendant les travaux de C.A.R. Hoare
effectués en 1968. La figure 3.2 illustre ces concepts.

3.4.2 Les axiomes du wp-calcul

Soit les notations suivantes.

• x⃗ l’ensemble des variables d’un programme,

• I une formule appelée un invariant,

• V un terme de type entier (i.e., V ∈ Z) appelé un variant,

• n une variable fraîche (i.e., n n’apparaît pas dans x⃗).

L’expression wp(P,A) est définie de manière inductive sur la structure des programmes.

wp(skip,A) ⇔ A (3.53)
wp(x := E,A) ⇔ A[x := E] (3.54)
wp(P1;P2,A) ⇔ wp(P1, wp(P2,A)) (3.55)

wp(if C then P1 else P2 end,A) ⇔ (C⇒ wp(P1,A)) ∧ (¬C⇒ wp(P2,A)) (3.56)
wp(while C do P end,A) ⇔ I (3.57)

∧ (∀x⃗ · ¬C ∧ I ⇒ A) (W1)
∧ (∀x⃗ · C ∧ I ⇒ wp(P, I)) (W2)
∧ (∀x⃗, n · C ∧ I ∧ n = V ⇒ wp(P, V < n)) (W3)
∧ (∀x⃗ · C ∧ I ⇒ V ≥ 0) (W4)

3.4.3 Affectation

La figure 3.3 illustre l’application du wp-calcul à une affectation x := E. Si le programme

x := x+ 1
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démarre dans un état satisfaisant
x > −1

alors il termine dans un état satisfaisant
x > 0.

En voici le calcul:

wp(x := x+ 1, x > 0)
⇔ ⟨ def. (3.54) ⟩

x > 0[x := x+ 1]
⇔ ⟨ application de la substitution ⟩

x+ 1 > 0
⇔ ⟨ lois de l’arithmétique ⟩

x > −1

3.4.4 La séquence

La figure 3.4 illustre l’application du wp-calcul à une séquence P1;P2. Si le programme

x := x+ 1; y := x+ 1

démarre dans un état satisfaisant
x > −2,

alors il termine dans un état satisfaisant
y > 0.

En voici le calcul:

wp(x := x+ 1; y := x+ 1, y > 0)
⇔ ⟨ def. (3.55) ⟩

wp(x := x+ 1, wp(y := x+ 1, y > 0))
⇔ ⟨ def. (3.54) ⟩

wp(x := x+ 1, y > 0[y := x+ 1])
⇔ ⟨ application de la substitution ⟩

wp(x := x+ 1, x+ 1 > 0)
⇔ ⟨ def. (3.54) ⟩

x+ 1 > 0[x := x+ 1]
⇔ ⟨ application de la substitution ⟩

(x+ 1) + 1 > 0
⇔ ⟨ lois de l’arithmétique ⟩

x > −2

3.4.5 La conditionnelle

La figure 3.5 ci-dessous illustre l’application du wp-calcul à une conditionnelle if C then P1 else P2 end.
Si le programme

if x > 0 then skip else x := −x

démarre dans un état satisfaisant
x ̸= 0,
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alors il termine dans un état satisfaisant
x > 0.

En voici le calcul:

wp(if x > 0 then skip else x := −x end, x > 0)
⇔ ⟨ def. (3.56) ⟩

x > 0⇒ wp(skip, x > 0)
∧
¬(x > 0)⇒ wp(x := −x, x > 0)

⇔ ⟨ def. (3.54) and (3.53) ⟩
x > 0⇒ x > 0

∧
¬(x > 0)⇒−x > 0

⇔ ⟨ (LP-23),(LP-22),(LP-21) ⟩
vrai

∧
x > 0 ∨ −x > 0

⇔ ⟨ lois de l’arithmétique ⟩
x > 0 ∨ x < 0

⇔ ⟨ lois de l’arithmétique ⟩
x ̸= 0

3.4.6 La boucle

La figure 3.6 ci-dessous illustre l’application du wp-calcul à une boucle

while x < k do x := x+ 1; s := s+ a[x] end

On suppose que x, s, k : N et a : array[1..k] of N, ce qui se représente en mathématiques par
a ∈ 1..k→ N. Si cette boucle démarre dans un état satisfaisant

s =
x∑

i=1

a[i] ∧ x ∈ 0..k (3.58)

alors elle termine dans un état satisfaisant

s =

k∑
i=1

a[i] (3.59)

Nous allons faire ce calcul avec l’équation (3.57), en prouvant séparément chaque élément de la
conjunction de (3.57) (i.e., en prouvant W1, W2, W3 et W4). Le choix de I et V est bien sûr
déterminant. Ici, nous choisissons

I
∆
= (3.58)

et
V

∆
= k − x.

La condition de la boucle est
C

∆
= x < k.
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Le corps de la boucle est
P

∆
= x := x+ 1; s := s+ a[x].

Preuve de (W1): supposons ¬C ∧ I. Il faut prouver A, qui est dans ce cas-ci (3.59).

(3.59)
⇔

s =
∑k

i=1 a[i]
⇔ ⟨ hyp. I : s =

∑x
i=1 a[i] ⟩∑x

i=1 a[i] =
∑k

i=1 a[i]
⇔ ⟨ hyp. I : x ∈ 0..k et hyp. ¬C: x ≥ k entrainent x = k ⟩∑k

i=1 a[i] =
∑k

i=1 a[i]
⇐

Lois de l’arithmétique

Preuve de (W2): supposons C ∧ I et montrons wp(P, I).

wp(P, I)
⇔ ⟨ déf. P ⟩

wp(x := x+ 1; s := s+ a[x], s =
∑x

i=1 a[i] ∧ x ∈ 0..k)
⇔ ⟨ def. (3.54) et (3.55) ⟩

s+ a[x+ 1] =
∑x+1

i=1 a[i] ∧ x+ 1 ∈ 0..k
⇔ ⟨ hyp. I : s =

∑x
i=1 a[i] ⟩

(
∑x

i=1 a[i]) + a[x+ 1] =
∑x+1

i=1 a[i] ∧ x+ 1 ∈ 0..k

La formule (
∑x

i=1 a[i])+a[x+1] =
∑x+1

i=1 a[i] est une instanciation de (3.2). La formule x+1 ∈ 0..k
se déduit comme suit: l’hypothèse C implique x + 1 ≤ k; l’hypothèse I implique x + 1 ≥ 0; donc,
par définition de 0..k, on a x+ 1 ∈ 0..k.

Preuve de (W3): : supposons C ∧ I ∧ n = V et montrons wp(P, V < n).

wp(P, V < n)
⇔

wp(x := x+ 1; s := s+ a[x], k − x < n)
⇔ ⟨ def. (3.54) et (3.55) ⟩

k − (x+ 1) < n
⇔ ⟨ hyp. n = V ⟩

k − (x+ 1) < k − x
⇔ ⟨ lois arithmétiques ⟩

k − x− 1 < k − x
⇐

x ∈ 0..k
⇐

hyp. I

Preuve de (W4): : supposons C ∧ I et montrons V ≥ 0.
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V ≥ 0
⇔

k − x ≥ 0
⇐

x ∈ 0..k
⇐

hyp. I

Puisque W1, W2, W3 et W4 sont vraies, alors on peut conclure que

wp( while x < k do x := x+ 1; s := s+ a[x] end, s =
∑k

i=1 a[i] )
⇔ (3.60)

s =
∑x

i=1 a[i] ∧ x ∈ 0..k

3.4.7 Preuve de correction d’un programme

Par exemple, montrons que le programme suivant

x := 0;
s := 0;
while x < k do x := x+ 1; s := s+ a[x] end

satisfait la spécification Spec(vrai, s =
∑k

i=1 a[i]). Soit W la boucle de ce programme. Il faut prouver
(3.52), soit

vrai ⇒ wp(x := 0; s := 0;W, s =

k∑
i=1

a[i])

Voici la preuve.

wp(x := 0; s := 0;W, s =
∑k

i=1 a[i])
⇔ ⟨ (3.55) ⟩

wp(x := 0, wp(s := 0, wp(W, s =
∑k

i=1 a[i])))
⇐ ⟨ (3.60) ⟩

wp(x := 0, wp(s := 0, s =
∑x

i=1 a[i] ∧ x ∈ 0..k))
⇔ ⟨ (3.54) ⟩

wp(x := 0, 0 =
∑x

i=1 a[i] ∧ x ∈ 0..k)
⇔ ⟨ (3.54) ⟩

0 =
∑0

i=1 a[i] ∧ 0 ∈ 0..k
⇐

Lois de l’arithmétiques
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wp(x:=x+1,x>0)

ó  x > -1
x>0x:=x+1

Figure 3.3: Le calcul d’un wp pour une affectation x := E

   wp(x:=x+1;y:=x+1,

         y>0)

ó  x > -2

y>0x:=x+1; y:=x+1

      x+2>0

ó x > -2
x+1>0x:=x+1 y:=x+1 y>0

Figure 3.4: Le calcul d’un wp pour une sequence P1;P2

x>0

if x>0 then skip else x:=-x

x>0

x<0

x=0

Figure 3.5: Le calcul d’un wp pour une conditionnelle
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wp(while C do P,f)

fwhile C do P

C

ØC

P

I

C

ØC

I

C

ØC

P

I

C

ØC

I

P C

ØC

I

...

V0 V1 V2> > Vn-1 Vn>

f

I

Figure 3.6: Le calcul d’un wp pour une boucle

3.5 Exercices

1. Prouvez par induction les formules suivantes.

(a) ∀x · x ∈ N⇒
∑x

i=0 2i = 2x+1 − 1

(b) ∀x · x ∈ N1⇒
∑x

i=1 5i−1 = (5x − 1)/4

(c) ∀x · x ∈ N3⇒ 2x+ 1 < 2x

(d) ∀x · x ∈ N1⇒ ϕx−2 ≤ Fx

(e) ∀x · x ∈ N⇒Fx < 2x

2. Prouvez les formules suivantes: soit r, r1, r2, r3 ∈ S↔ S et T ⊆ S

(a) (r1 ; r2)
−1 = r−1

2 ; r−1
1

(b) (r1 ∪ r2)
−1 = r−1

1 ∪ r−1
2

(c) id(T ) ; r = (T × S) ∩ r

(d) id(T ) ; r = T ◁ r

(e) id(T ) ; (r1 ∩ r2) = (id(T ) ; r1) ∩ (id(T ) ; r2)

(f) (T × S) ; (T × S) = (T × S)

(g) r1 ⊆ r2 ⇔ r−1
1 ⊆ r−1

2

(h) r1 ∈ S 7→ S ⇒ r1 ; (r2 ∩ r3) = (r1 ; r2) ∩ (r1 ; r3)

Indice: Utilisez le lemme suivant, que vous prouverez ensuite.

r ∈ S 7→ S ⇒ ((x, y) ∈ r ∧ (x, z) ∈ r⇒ y = z)
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(i) f ∈ A→B ∧ g ∈ B→A ∧ f ; g = id(A) ∧ g ; f = id(B)
⇒

f = g−1 ∧ f ∈ A↣↠B ∧ g ∈ B ↣↠A

(j) f ∈ S ↣ T
⇔
∀(x, y).(x ∈ S ∧ y ∈ S ⇒ (f(x) = f(y)⇒ x = y)) ∧ dom(f) = S

(k) r ∈ S↔ S
⇒

id(S) ⊆ r ; r−1⇔ dom(r) ⊆ S

(l) Soit r ∈ S↔ S, montrez que r ; id(S) = r

3. Déterminez si les formules suivantes sont vraies ou fausses. Donnez une preuve si elles sont
vraies. Donnez un contre-exemple si elles sont fausses.

Soit A,B,C,D des ensembles.

(a) (A ∩B)× (C ∩D) = (A× C) ∩ (B ×D)

(b) (A ∪B)× (C ∪D) = (A× C) ∪ (B ×D)
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Chapitre 4

Automate

Les automates sont largement utilisés en informatique. Ils permettent de reconnaitre les mots d’un
langage, et définissent la classe des langages dits réguliers. On les retrouvent dans les compilateurs,
les spécifications de systèmes, la vérification de systèmes, entre autres. Ils constituent le modèle
le plus simple de représentation du calcul dans un ordinateur. En effet, un ordinateur n’est rien
d’autre qu’une machine qui dispose d’une mémoire finie, d’un état (i.e., la valeur courante de sa
mémoire), et qui effectue une opération qui change son état. Les automates sont étroitement reliés
aux expressions régulières et aux grammaires régulières, qui représentent tous la même classe de
langages, soit les langages dits réguliers. Les expressions régulières et les grammaires sont présentées
dans le cours IFT313. Il existe plusieurs variantes d’automates (machine de Mealy et de Moore,
automate à pile, diagramme états-transitions, machine de Turing). Dans MAT115, on s’intéresse
seulement aux automates finis déterministes et non-déterministes, qui sont équivalents. Les autres
formes d’automates sont traitées dans les cours suivants : IFT313 – Introduction aux langages
formels, IFT232 – Méthodes de conception orientée objet, IGL301 – Spécification et vérification
des exigences, IFT580 – Compilation et interprétation des langages, IFT503 – Théorie du calcul et
IGL501 – Méthodes formelles en génie logiciel.

4.1 Automate fini déterministe

Définition 17 Un automate fini déterministe (AFD) est un quintuplet ⟨Q,Σ, δ, q0, F ⟩ tel que

• Q est l’ensemble fini des états de l’automate.

• Σ est un ensemble fini de symboles; on appelle cet ensemble l’alphabet de l’automate.

• δ ∈ Q× Σ→Q est la fonction de transition de l’automate.

• q0 ∈ Q est l’état initial de l’automate.

• F ⊆ Q est l’ensemble des états finaux de l’automate.

□

La figure 4.1 illustre deux AFD. L’état initial d’un AFD est identifié par l’un ou l’autre des pic-
togrammes ci-dessous.

0 ou 0
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0
a c

21

b

(i)

0
a c

21

b

(ii)

3

b,c a,b,c

a

a,b,c

Figure 4.1: AFD incomplet (i), complété en (ii)

Un état final est représenté par un double cercle.

Un état initial peut aussi être final; il est représenté comme suit.

0 ou 0

L’AFD (i) est dit incomplet, car sa fonction de transition n’est pas totale. Pour l’état 0, les
transitions sur b et c ne sont pas définies. Idem pour l’état 1 avec a, et l’état 2 avec a,b,c. On utilise
souvent la convention suivante, par soucis de lisibilité: les transitions non définies sont implicitement
des transitions vers un état appelé puits; ce nom signifie qu’on ne peut plus sortir de cet état après
y être entré. L’AFD (ii) représente l’AFD (i) avec son état 3, qui est un état puits, ajouté afin que
la fonction de transition δ soit totale. Voici la définition formelle de l’automate (ii).

• Q = {0, 1, 2, 3}

• Σ = {a, b, c}

• δ = {(0, a, 1), (0, b, 3), (0, c, 3),
(1, a, 3), (1, b, 1), (1, c, 2),
(2, a, 3), (2, b, 3), (2, c, 3),
(3, a, 3), (3, b, 3), (3, c, 3)}

• q0 = 0

• F = {2}

Chaque triplet de δ représente une transition dans l’automate. Voici quelques autres définitions
utiles.

• Nous utiliserons généralement le terme « mot » au lieu de « suite de symboles » dans le
reste de ce chapitre, comme cela est l’appelation typique dans la théorie des automates et des
languages formels.
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• Σ∗ est l’ensemble de tous les mots formés d’éléments de Σ.

Σ∗ est noté seq(Σ) dans le langage B.

• [ ] dénote le mot vide (i.e., il ne contient aucun symbole).

[ ] est parfois notée ϵ dans plusieurs ouvrages sur les automates.

[ ] est l’élément neutre de la concaténation:

[ ] ⌢w = w ⌢[ ] = w

• Σ+ = Σ∗ − [ ]

Σ+ est noté seq1(Σ) dans le langage B.

• Pour simplifier la représentation d’une transition de q1 à q2 sur σ, c’est-à-dire le triplet

(q1, σ, q2) ∈ δ

on utilise à la place la notation suivante, qui rappelle une transition dans l’automate.

q1
σ−→ q2

• δ̂ ∈ Q× Σ∗→Q est l’extension de δ aux mots. Elle est définie comme suit:

δ̂(q, [ ]) = q (4.1)
δ̂(q, w ⌢[σ]) = δ(δ̂(q, w), σ) (4.2)

• L(M) = {w | w ∈ Σ∗ ∧ δ̂(q0, w) ∈ F} dénote le langage accepté par l’AFD M .

En termes plus simples, on dit qu’un automate accepte le mot w = σ1 . . . σn si la séquence de
transitions qui lit le mot w termine sur qn ∈ F .

q0
σ1−→ q1

σ2−→ . . .
σn−→ qn et qn ∈ F

Rappelons que q0 dénote l’état initial de l’automate. Voici un exemple d’acceptation du mot
abbc par l’automate de la Figure 4.1(ii)

0
a−→ 1

b−→ 1
b−→ 1

c−→ 2 ∈ F

Le mot bb est refusé par le même automate, car l’automate termine dans l’état 3 après avoir
lu tous les symboles, et cet état n’est pas final.

0
b−→ 3

b−→ 3 ̸∈ F

La fonction δ̂ permet de représenter formellement la séquence de transitions qui permet de
lire un mot dans un automate. Pour le voir, représentons cette séquence de transitions en
utilisant δ, en remplaçant q1 par δ(q0, σ1), q2 par δ(δ(q0, σ1), σ2), et ainsi de suite.

q0
σ1−→ δ(q0, σ1)

σ2−→ δ(δ(q0, σ1), σ2) . . .
σn−→ δ(δ((. . .), σn−1), σn)

La fonction δ̂ permet de calculer le terme δ(δ((. . .), σn−1), σn). À titre illustratif, appliquons
la définition de δ̂ à l’automate de la Figure 4.1(ii) pour le mot abbc.
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⌞δ̂(0, abbc)⌟
= ⟨ déf. de δ̂ ⟩
⌜δ(⌞δ̂(0, abb)⌟, c)

⌝

= ⟨ déf. de δ̂ ⟩
δ(⌜δ(⌞δ̂(0, ab)⌟, b)

⌝, c)
= ⟨ déf. de δ̂ ⟩
δ(δ(⌜δ(⌞δ̂(0, a)⌟, b)

⌝, b), c)
= ⟨ déf. de δ̂ ⟩
δ(δ(δ(⌜δ(⌞δ̂(0, [ ])⌟, a)

⌝, b), b), c)
= ⟨ déf. de δ̂ ⟩
δ(δ(δ(⌞δ(

⌜0⌝, a)⌟, b), b), c)
= ⟨ déf. de δ ⟩
δ(δ(⌞δ(

⌜1⌝, b)⌟, b), c)
= ⟨ déf. de δ ⟩
δ(⌞δ(

⌜1⌝, b)⌟, c)
= ⟨ déf. de δ ⟩

⌞δ(
⌜1⌝, c)⌟

= ⟨ déf. de δ ⟩
⌜2⌝

4.2 Automate fini non-déterministe

Définition 18 Un automate fini non-déterministe (AFND) est un quintuplet ⟨Q,Σ, δ, q0, F ⟩ tel que

• Q,Σ, q0, F sont de même nature que Q,Σ, q0, F dans un AFD.

• δ ⊆ Q× (Σ ∪ {λ})×Q est la relation de transition de l’automate.

□

Les différences entre un AFND et un AFD sont les suivantes:

• Les transitions d’un AFND peuvent être étiquetées avec λ, un symbole particulier qui dénote
un changement d’état sans lecture d’un symbole dans la suite à traiter par un automate.
Autrement dit, λ ne fait pas partie de l’alphabet du langage accepté par l’AFND.

• δ est une fonction totale dans un AFD, alors que δ est une relation dans un AFND. Il n’est
donc pas nécessaire de faire un état puits dans un AFND, puisque la relation δ peut être
partielle.

La figure 4.2 illustre deux AFND, soit (i) et (ii), qui acceptent le même langage, ainsi qu’un AFD
(iii) qui accepte le même langage que (i) et (ii). Le non-déterminisme est présent dans (i) pour
l’état 0, car il y a deux transitions possibles pour a. Le non-déterminisme est présent dans (ii) pour
l’état 0, car il y a une transition sur λ.

Les définitions suivantes seront utiles.

• La fonction λ-filtre ∈ (Σ ∪ {λ})∗→ Σ∗ supprime le symbole λ d’un mot.

λ-filtre([ ]) = [ ] (4.3)
σ ∈ Σ ∧ w ∈ (Σ ∪ {λ})∗ ⇒ λ-filtre([σ] ⌢w) = [σ] ⌢ λ-filtre(w) (4.4)

w ∈ (Σ ∪ {λ})∗ ⇒ λ-filtre([λ] ⌢w) = λ-filtre(w) (4.5)
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Figure 4.2: Les AFND (i) et (ii) acceptent le même langage que l’AFD (iii)

• Le langage accepté par un AFND M = ⟨Q,Σ, δ, q0, F ⟩ est défini comme suit:

L(M) = {w1 | w1 ∈ Σ∗ ∧
∃w2 · w2 ∈ (Σ ∪ {λ})∗ ∧ λ-filtre(w2) = w1 ∧
∃z · z ∈ Q+ ∧ card(z) = card(w2) + 1 ∧
first(z) = q0 ∧ last(z) ∈ F ∧
∀i · i ∈ dom(w2)⇒ (z(i), w2(i), z(i+ 1)) ∈ δ

}

Autrement dit, w1 ∈ L(M) ssi il existe w2 tel que w1 = λ-filtre(w2), et il existe z tel que
q0 = z(1) et last(z) ∈ F et

z(1)
w2(1)−−−→ z(2)

w2(2)−−−→ . . .
w2(n)−−−→ z(n+ 1)

Dans le cas où w1 = w2 = [ ], on a dom(w2) = {}, et w1 ∈ L(M)⇔ z = [q0] et q0 ∈ F .

4.3 Déterminisation d’un AFND

Cette section décrit comment déterminiser un AFND M , c’est-à-dire construire un AFD MD tel
que L(M) = L(MD). Les définitions suivantes seront utiles.

• La relation λ-closure contient les couples d’états (q1, q2) telles qu’il existe, dans M , une suite
(possiblement vide) de transitions λ menant de q1 à q2, i.e.,

q1
λ−→ . . .

λ−→ q2

On peut définir λ-closure en utilisant la fermeture réflexive et transitive.

λ-closure = {(q1, q2) | (q1, λ, q2) ∈ δ}∗

Voici la valeur de λ-closure pour l’AFND (ii) de la figure 4.2:

λ-closure = {(0, 0), (0, 1), (1, 1), (2, 2), (3, 3)}
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• La relation t ∈ Q× Σ×Q contient les triplets (q1, σ, q2) tels qu’il existe, dans M ,

– une suite (possiblement vide) de transitions λ menant de q1 à q′1,

– puis une transition sur σ de q′1 à q′2,

– et finalement une suite (possiblement vide) de transitions λ menant de q′2 à q2.

Ce que l’on peut résumer comme suit:

q1
λ−→ . . .

λ−→ q′1
σ−→ q′2

λ−→ . . .
λ−→ q2

Intuitivement, on aimerait simplement définir t comme suit:

t = λ-closure ; δ ; λ-closure

mais la syntaxe du langage B ne le permet pas, à cause d’un problème de typage1. Elle est
définie formellement comme suit:

t = {(q1, σ, q2) | q1 ∈ Q ∧ σ ∈ Σ ∧ q2 ∈ Q ∧
∃q3 · (q1, q3) ∈ λ-closure ∧ (q3, σ, q2) ∈ δ ; λ-closure}

Voici la valeur de t pour l’AFND (ii) de la figure 4.2:

t = {(0, a, 0), (0, a, 1), (0, a, 2), (0, b, 0), (0, b, 1), (1, a, 2), (2, b, 3)}

Soit un AFND M = ⟨Q,Σ, δ, q0, F ⟩. Il existe un algorithme calculant un AFD MD = ⟨QD,Σ, δD, q0D , FD⟩,
tel que L(M) = L(MD). Les composantes de MD sont typées comme suit.

• QD ⊆ P(Q), c’est-à-dire que les états de QD sont des sous-ensembles d’états de Q.

• δD ∈ QD × Σ→QD

• q0D ∈ QD

• FD ⊆ QD

Cet algorithme est donné à la figure 4.4. Il utilise le prédicat transitionADefinir(X,σ), défini
comme suit:

transitionADefinir(X,σ) ⇔ X ∈ QD ∧ (X,σ) ̸∈ dom(δD)

Cet algorithme utilise également l’opérateur ANY, dont la forme générale est la suivante:

ANY x⃗ WHERE A THEN p END

Cet opérateur choisit de manière non-déterministe une valeur de x⃗ satisfaisant A et exécute ensuite
la partie p.

Un état de MD est un sous-ensemble de Q. L’algorithme simule le parcours de tous les chemins
permettant d’accepter un mot. L’état initial de MD est λ-closure[{q0}], i.e., tous les états de M
accessibles de l’état q0 par une suite (possiblement vide) de transitions λ. L’algorithme utilise t pour
calculer tous les états accessibles en lisant σ en effectuant des transitions λ avant et/ou après σ.
Une transition (X,σ, Y ) ∈ δD signifie qu’il existe, à partir d’un état de X, une suite (possiblement

1Le langage Alloy nous le permettrait, car les relations y sont n-aires au lieu de binaires comme en B, et la
composition relationnelle est généralisée aux relation n-aires.
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q0D := λ-closure[{q0}];
QD := {q0D};
δD := {};
WHILE dom(δD) ̸= (QD × Σ) DO

ANY X,σ, Y WHERE
transitionADefinir(X,σ)

∧ Y =
⋃

q2∈X
t[{(q2, σ)}]

THEN
QD := QD ∪ {Y };
δD := δD ∪ {(X,σ, Y )}

END
END;
FD := {X | X ∈ QD ∧X ∩ F ̸= {}}

Figure 4.4: Algorithme de déterminisation d’un AFND

vide) de transitions λ, suivie d’une transition sur σ et suivie d’une suite (possiblement vide) de
transitions λ, menant à un des états de Y . Ainsi, Y est constitué de tous les états de M accessibles
à partir d’un état de X en lisant σ. La figure 4.3 illustre l’AFD résultant de la déterminisation de
l’AFND (ii) de la figure 4.2.

0,1 0,1,2
a

0,1,3
b

b a

b

a

Figure 4.3: L’AFD résultant de la déterminisation de l’AFND (ii) de la figure 4.2
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4.4 Minimisation d’un AFD

Étant donné un AFD M1, il est possible de calculer un AFD M2 tel que L(M1) = L(M2) et le
nombre d’états de M2 est minimal, c’est-à-dire, il n’existe pas d’autre AFD M3 tel L(M3) = L(M1)
et le nombre d’états de M3 est plus petit que le nombre d’états de M2. La minimisation repose sur
le principe suivant: deux états q1, q2 sont équivalents ssi

∀w · w ∈ Σ∗ ⇒ (δ̂(q1, w) ∈ F ⇔ δ̂(q2, w) ∈ F )

Quand deux états sont équivalents, ont dit, de manière équivalente, qu’ils sont indistinguables. S’ils
ne sont pas équivalents, on dit qu’ils sont distinguables, c’est-à-dire,

∃w · w ∈ Σ∗ ∧ ¬(δ̂(q1, w) ∈ F ⇔ δ̂(q2, w) ∈ F )

Deux états équivalents peuvent être fusionnés, puisque tout mot acceptée par un le sera par l’autre
aussi. On peut déterminer les états équivalents d’un AFD en identifiant les états qui sont distin-
guables, et en propageant cette distinguabilité aux états qui sont reliés aux états distinguables par
une transition de l’AFD sur un même symbole. Après avoir parcouru toutes les paires d’états, ceux
qui ne sont pas distinguables sont alors considérés comme étant équivalents, et ils peuvent être
fusionnés. Au départ, on sait qu’un état final q1 ∈ F se distingue d’un état non final q2 ̸∈ F , parce
que δ̂(q1, []) ∈ F et δ̂(q2, []) ̸∈ F . Ensuite, si δ(x1, σ) = y1 et δ(x2, σ) = y2, et si les états y1 et y2
sont distinguables, alors x1 et x2 sont aussi distinguables, car l’un permet de terminer après avoir
accepté σ, alors que l’autre ne le permet pas. En itérant sur ce principe, on peut trouver tous les
états distinguables, et, par conséquent, les états équivalents. L’algorithme de minimisation applique
ce principe comme suit:

• La variable D contient les paires d’états {q1, q2} tels que q1 et q2 sont distinguables. On
utilise un ensemble au lieu d’un couple q1 7→ q2, car si q1 et q2 sont distinguables, alors q2 et
q1 sont aussi distinguables. Utiliser une paire {q1, q2} évite d’utiliser deux couples q1 7→ q2 et
q2 7→ q1. Il n’est donc pas nécessaire de conserver les deux couples, et un ensemble suffit. La
distinguabilité est une relation d’équivalence, c’est-à-dire qu’elle est symétrique, transitive et
réflexive. On utilise le prédicat paire(x, y,Q) pour indiquer que x et y forment une paire de
Q.

paire(x, y,Q)⇔ x ∈ Q ∧ y ∈ Q ∧ x ̸= y

• La variable r est une relation sur les paires d’états. Si on découvre que {x2, y2} sont distin-
guables, alors toutes transitions δ(x1, σ) = x2 et δ(y1, σ) = y2 entrainent que x1 et y1 sont
distinguables; on ajoute alors le couple {x2, y2} 7→ {x1, y1} à r. On itère sur r (i.e., r∗) pour
propager la distinguabilité lorsqu’on détermine que x2 et y2 sont distinguables.

• La variable V contient les paires d’états {q1, q2} pour lesquels la distinguabilité reste à déter-
miner.

• La variable E contient, à la fin de l’algorithme, les paires d’états {q1, q2} tels que q1 et q2 sont
équivalents. Il suffit alors de regrouper en un seul état les états qui sont équivalents entre
eux, c’est-à-dire les classes d’équivalences. On note ⌈q⌉ la classe d’équivalence de q. Donc, on
forme les ensembles suivants, en considérant chaque état q1 ∈ Q.

⌈q1⌉ = {q1} ∪ {q2 | {q1, q2} ∈ E}

On voit que si {q1, q2} ∈ E, alors ⌈q1⌉ = ⌈q2⌉.
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La figure 4.5 illustre le calcul de D et de r. Au départ, on sait que la paire {1, 2} ∈ D, car 1 ∈ F et
2 ̸∈ F . Ensuite, en traitant la paire {3, 4}, on déduit que {3, 4} ∈ D, car {1, 2} ∈ D et δ(3, a1) = 1
et δ(4, a1) = 2. La paire {5, 6} est traitée de manière similaire. Pour la paire {7, 8}, on ne trouve
pas de transition menant à une paire d’états {x, y} ∈ D. Toutefois, comme il existe une paire {9, 10}
dont on ne connait encore pas la distinguabilité, et que δ(7, a3) = 9 et δ(8, a3) = 10, on ajoute alors
le couple {9, 10} 7→ {7, 8} à r, car si on déduit subséquemment que {9, 10} ∈ D, alors on ajoutera
aussi {7, 8} à D. À la fin du traitement de toutes les paires d’états, si on n’a pu distinguer {7, 8},
alors on ajoute {7, 8} à E, et ils seront considérés comme équivalents.

L’algorithme de minimisation est présenté à la figure 4.6. Il est issu des travaux de Edward
F. Moore, un des auteurs de la théorie des automates, qui est centrale en informatique. John E.
Hopcroft a aussi proposé un algorithme, plus performant que celui inspiré des travaux de Moore;
la complexité de l’algorithme de Hopcroft est de O(ns log n), où n = card(Q) et s = card(Σ), alors
que celle de Moore est de l’ordre de O(n2s). Hopcroft a reçu le prix Alan Turing en 1987 pour
ses travaux en théorie des compilateurs, en architecture des grands systèmes, et pour l’invention
des architectures RISC pour les processeurs. La figure 4.7 illustre un AFD et sa minimisation. La
figure 4.8 illustre le tableau de sa minimisation. Les états équivalents sont ceux qui n’apparaissent
pas dans D, c’est-à-dire {1, 3} et {2, 4}; donc E = {{1, 3}, {2, 4}}. Les états équivalents sont
regroupés dans l’AFD (iii) de la figure 4.7. Donc, étant donné un AFD ⟨Q,Σ, δ, q0, F ⟩, on calcule
l’automate minimisé

Mmin = ⟨Qmin,Σ, δmin, q0min , Fmin⟩

où

• Qmin ⊆ P(Q)

• δmin ∈ (P(Q)× Σ)→ P(Q)

• Fmin ⊆ P(Q)

comme suit:

• Qmin = {X | ∃x · x ∈ Q ∧X = ⌈x⌉}

• δmin = {(X,u, Y ) | ∃x, y · x ∈ X ∧ y ∈ Y ∧ (x, u, y) ∈ δ}

• q0min = ⌈q0⌉

• Fmin = {X | ∃x · x ∈ F ∧X = ⌈x⌉}

Donc, les états de l’automate minimal (Qmin) sont les classes d’equivalence des états de l’automate
d’origine. Les états finaux (Fmin) sont les classes d’équivalences des états finaux de l’automate
d’origine. Il y a une transition de X sur σ vers Y s’il y a une transition entre un élément de X sur
σ vers un élément de Y dans δ.

142



3

2

1

D

4

a
1

D

a
1

5

6

a
2

D

a
2

9

10

?

7

8

a
3

?

a
3

r

Figure 4.5: Calcul de D et r

D :=
⋃
(x, y).(paire(x, y,Q) ∧ (x ∈ F ⇔ y ̸∈ F ) | {{x, y}})

V :=
⋃
(x, y).(paire(x, y,Q) ∧ (x ∈ F ⇔ y ∈ F ) | {{x, y}})

r := {}
WHILE V ̸= {} DO

ANY x1, y1 WHERE
{x1, y1} ∈ V

THEN
IF ∃(u, x2, y2) · (u ∈ Σ ∧ x2 = δ(x1, u) ∧ y2 = δ(y1, u) ∧ x2 ̸= y2 ∧ {x2, y2} ∈ D)

THEN
D := D ∪ r∗[{{x1, y1}}]

ELSE
r := r ∪⋃

(u, x2, y2).(u ∈ Σ ∧ x2 = δ(x1, u) ∧ y2 = δ(y1, u) ∧ x2 ̸= y2 ∧
{x1, y1} ≠ {x2, y2}

| {{x2, y2} 7→ {x1, y1}})
END;

V := V − {{x1, y1}}
END

END;
E :=

⋃
(x, y).(paire(x, y,Q) | {{x, y}})−D

Figure 4.6: Algorithme de minimisation d’un AFD
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Figure 4.7: Minimisation de l’automate incomplet (i), complété en (ii), et minimisé en (iii)

Paire D r E
{0,2} X
{0,4} X
{1,2} X
{1,4} X
{2,3} X
{2,5} X
{3,4} X
{4,5} X

{0,1} X
{0,3} X
{0,5} X2(r[{1,5}])
{1,3} X
{1,5} X {0,5}
{2,4} {1,3} X
{3,5} X {0,5}

Figure 4.8: Tableau du calcul pour la minimisation de l’automate de la figure 4.7
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L’AFD résultant de la déterminisation d’un AFND n’est pas nécessairement minimal. On doit
le minimiser. Considérons l’AFND suivant.

0
1a

λ

2
b

b

3b λ

a

b

a

Voici l’AFD résultant de sa déterminisation.
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Voici l’AFD résultant de sa minimisation.
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4.5 Exercices

1. Définissez un automate déterministe qui accepte une suite de symboles représentant un entier
dans un langage de programmation comme Java ou C++. Le signe (+ ou −) apparait au
début du nombre et il est facultatif. L’entier doit comprendre au moins un chiffre.
Σ = 0..9 ∪ {+,−}.

2. Définissez un automate déterministe qui accepte une suite de symboles représentant un nombre
en point flottant dans un langage de programmation comme Java ou C++. Le nombre peut
débuter par un « . » . L’exposant, introduit par le symbole e ou le symbole E, est optionnel;
il est donné par un entier facultativement signé.
Σ = 0..9 ∪ {+,−, e,E, .}.

3. Définissez un automate déterministe qui décrit le comportement d’une pile de taille maxi-
male 2. L’état final est une pile vide. On peut empiler les éléments de l’ensemble {0, 1}.
Σ = ({push, top} × {0, 1}) ∪ {pop}.

• L’opération (push,x) ajoute l’élément x au sommet de la pile, avec x ∈ {0, 1}.
• L’opération (top,x) indique que l’élément x est sommet de la pile, avec x ∈ {0, 1}. Elle

ne modifie pas l’état de la pile.
• L’opération pop supprime l’élément au sommet de la pile. Elle n’a pas de paramètre, car

il n’est pas nécessaire vu que c’est élément au sommet de la pile qui est enlevé.

4. Définissez un automate déterministe qui décrit le comportement d’une file de taille maximale 2.
Pour simplifier, on suppose qu’une file ne peut contenir deux fois le même élément. L’état
final est une file vide. On peut enfiler les éléments de l’ensemble {0, 1}.
Σ = ({enfiler, tête} × {0, 1}) ∪ {défiler}.

• L’opération (enfiler,x) ajoute l’élément x à la queue de la file, avec x ∈ {0, 1}.
• L’opération (tête,x) indique que l’élément x est en tête de la file, avec x ∈ {0, 1}. Elle

ne modifie pas l’état de la pile.
• L’opération defiler supprime l’élément en tête de la file. Elle n’a pas de paramètre, car il

n’est pas nécessaire vu que c’est élément en tête de la file qui est enlevé.

5. Définissez un automate déterministe qui décrit le cycle de vie d’un livre dans un système qui
gère une bibliothèque; supposez qu’il n’existe que deux membres, identifiés par l’ensemble
M = {0, 1}. L’état final représente un livre supprimé.
Σ = {créer, supprimer, retourner} ∪ ({emprunter, réserver, annuler} ×M). On suppose qu’il faut
réserver un livre avant de l’emprunter.

• L’opération créer crée le livre.
• L’opération supprimer supprime le livre. Avant de supprimer un livre, il faut avoir terminé

son prêt et ses réservations.
• L’opération (réserver,x) réserve le livre pour le membre x, avec x ∈ {0, 1}. Un membre

ne peut avoir deux réservations actives pour un même livre.
• L’opération (emprunter,x) prête le livre au membre x, avec x ∈ {0, 1}. Le membre doit

être en tête de la file de réservation. Le membre doit avoir réservé le livre au préalable.
• L’opération (annuler,x) annule la réservation du membre x, avec x ∈ {0, 1}. Un membre

ne peut avoir deux réservations actives pour un livre.
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• L’opération retourner retourne le livre prêté; elle n’a pas de paramètre, car on sait que le
livre est prêté.

6. Définissez un automate déterministe qui accepte le paiement d’un café avec des pièces de 5
et 10 cents. L’alphabet contient les éléments suivants: Σ = {5, 10, café, (rendre, 5)}, où 5, 10
signifient accepter une pièce de 5 ou 10 cents, café veut dire prendre le café, et (rendre, 5)
signifie rendre 5 cents en monnaie. La suite de pièces est acceptée ssi la somme des pièces
donne au moins le coût d’un café, soit 25 cents et au maximum 30 cents (afin de rendre au
plus 5 cents). On peut recommencer le processus de paiement, donc l’état final est seulement
l’état initial, où il n’y a aucune pièce entrée.

7. Soit Σ = {a, b, c, d}. Définissez un automate déterministe pour chaque sous-question suivante.
L’automate doit accepter seulement les suites décrites, et refuser toutes les autres suites.

(a) une suite acceptée commence par la sous-suite [a, b].

(b) une suite acceptée contient la sous-suite [a, b].

(c) une suite acceptée contient la sous-suite [a, b] suivie (pas nécessairement immédiatement)
de la sous-suite [c, d].

(d) une suite acceptée termine par la sous-suite [a, b].

(e) une suite acceptée contient la sous-suite [a, b] ou la sous-suite [c, d].

(f) une suite acceptée contient la sous-suite [a, b] et la sous-suite [c, d].

(g) une suite acceptée contient un nombre pair de a et un nombre impair de b.

8. Est-il possible de définir un automate qui accepte seulement les suites de la forme anbn, c’est-
à-dire que la suite est formée d’une suite de a suivie d’une suite de b, et qu’il y a exactement
le même nombre de a que de b?

9. Déterminisez les automates suivants:

(a)

2
0

λ

1
a
λ

a

Solution:

{0,1} {0,1,2}a

a

(b)
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2

3
c

1

b

0

c

λ

λ
a

Solution:

{0,1,2}

{1}
b

{2}a

{3}
c

{}

a
b
c

b

c
a a
b

c
a

b
c

(c)

0

b

1a 2a
b

b

Solution:

{0}

b

{1}a
{}

a
b

b

{2}

a a

{1,2}

b

a

b

(d)

0

b
1b

b

2

a

b
a

Solution:
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{0}

{}

a

{0,1}b

a
b

b

{2}

a

b {1}a
a

b

(e)

0

1a
2

a

a

3b
a
b

Solution:

{0}

{}

b

{1,2}
a

a
b

{3}

b

{1,3}

a

{1}

a

b

a

{2}

ba

{2,3}

b
a

b

b

a

(f)

0

b

1

a

2a

a
3

b
ba

b

Solution:

{0}

b

{1,2}a

{}

a
b

a

{3}
b

{0,2}a

{0,3}
b

a

{0,1,3}
b

b

{0,1,2}

a

b

a
{1,3}

b

{2}
a

a

b

a

b
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(g)

0

a

1
c

2

λ

c

bb

Solution:

{0,2}

a
{1,2}b

{1}
c

{}

a
b
c

a

b

c a
b

c

(h)

0
1a

λ

2
b

b

3b λ

a

b

a

Solution:

{0,1}

{1}a

{1,2,3}

b

{}

a
b

a

{1,3}

b b {0,1,3}
a

b

a

b

a

10. Minimisez les automates suivants:

(a)
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Solution: E = {{0, 3}, {1, 2}, {1, 4}, {2, 4}}

(b)

Solution: E = {}
L’automate est déjà minimal

(c)

Solution: E = {{4, 5}, {4, 6}, {5, 6}}
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(d)

Solution: E = {{1, 3}, {2, 4}}

(e)
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Solution: E = {{1, 3}, {2, 4}}

(f)

Solution: E = {{1, 3}, {2, 4}, {5, 6}}
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{¬(X1 ∨ ¬X2)⇒ X3, ¬X2} ( ¬X3
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