
A proof-based ground algebraic meta-model for
reasoning on ASTD in Event-B

Christophe Chen1,2, Peter Rivière1,3, Neeraj Kumar Singh1, Guillaume Dupont1,
Yamine Ait Ameur1, Marc Frappier2

1IRIT/Toulouse INP-ENSEEIHT, CNRS, University of Toulouse, France
2Université de Sherbrooke, Sherbrooke, QC, Canada

3JAIST - Japan Advanced Institute of Science and Technology, Nomi, Ishikawa, Japan
{christophe.chen, peter.riviere, nsingh, guillaume.dupont, yamine}@enseeiht.fr,

marc.frappier@usherbrooke.ca

Abstract—Algebraic State Transition Diagram (ASTD) is a
formal, graphical, state-based modeling language for the design
of complex critical systems. It offers a set of process algebra
operators to compose hierarchical state machines, streamlining
modularity in system design. Despite advances in incorporating
features such as local state variables and real time, ASTD tool
support has primarily focused on design and testing. Recently,
proof obligations for state invariant preservation were intro-
duced, but the validity of these proof obligations was informally
justified. To address this issue, this paper introduces an Event-
B-based algebraic data-type, called EB[ASTD], formalising the
operational semantics of ASTDs. Relying on a deep modelling
strategy, this framework defines a ground model for the formal
operational semantics of ASTDs and provides a proof-based
mechanism allowing for reasoning on specific ASTDs defined
as instances of this meta-model. It enables explicit manipulation
of ASTD concepts and improves formal reasoning by integrating
their syntax and semantics as Event-B algebraic theories. The
designed tool relies on the Rodin platform to provide automated
proof obligation generation, automatic and interactive verifica-
tion, graphical animation, and model checking of ASTDs. In
addition, it allows us to prove the validity of the generated
ASTD proof obligations for state invariants, which reveals the
core properties and theorems that ensure its reliability. Overall,
EB[ASTD] provides a sound foundation for proving properties
about ASTDs and operates effectively within the Rodin platform,
designed for managing ASTD models and proofs.

I. INTRODUCTION

Context. Algebraic State Transition Diagram (ASTD) [1] is
a formal, graphical, state-based modeling language for the
design of complex systems [2], [3]. It offers a set of process
algebra operators, drawn from CSP, to compose hierarchical
state machines, streamlining modularity in system design. Its
operational semantics [1] specifies transition rules for each
ASTD operator. The expressiveness of ASTD is defined by an
extensive range of operators, such as Automaton, Sequence,
Guard, Closure, Choice, QChoice, Synchronisation, QSynchro-
nisation, Flow, and QFlow, which facilitates the design of
complex systems using the composition operators.
Motivation. Over time, ASTD has been extended with vari-
ous perspectives. Despite advances in incorporating features

Part of this work is supported by the ANR project EBRP:EventB-Rodin-
Plus under grant no. ANR-19-CE25-0010 and by NSERC.

such as local variables [4], time [5] and state invariants [6],
ASTD tools have primarily focused on design and testing,
with no tool support for formal proof of properties. These
developments have been conducted empirically relying on ad
hoc model transformations and testing. Indeed, the attempts
for mechanising the semantics of ASTDs and its associated
verification process involved shallow embeddings of ASTDs,
i.e., interpreting ASTD specifications in another language
being either a formal modelling language like B and Event-B
machines [7], [8] or a programming language like C++ [4], [9].
Reasoning on ASTDs is performed on the target modelling or
programming languages, using their own semantics, verifica-
tion processes and tools. As a consequence, the exploitation of
the expressive power, hierarchical and compositional structure
of ASTDs are lost after being embedded in the target language.
The identified specification errors are expressed in terms of
the target modeling or programming language; tracing them
back to the original ASTD is difficult. This lack of traceability
complicates validation and decreases confidence in the overall
system. To the best of our knowledge, there is no convincing
mechanism for representing ASTD semantics and formalising
them in order to do formal reasoning on ASTD models,
including defined properties.
Our contribution. To address this issue, we introduce the
EB[ASTD] framework, that formalises the ASTD language
and its semantics, including state-transitions systems and CSP
composition operators. We use Event-B [10] and its extension
for defining algebraic theories [11] to express a meta-model.
Relying on a deep embedding, an ASTD specification is
formalised as instances of algebraic data-types representing
the various ASTD operators. This meta-model formalises the
semantics of ASTDs, their properties (e.g., invariants) as well
as the proof system to discharge such properties.

It is worth noting that, unlike other defined embeddings, the
proposed deep embedding preserves the structure of the ASTD
descriptions, making it possible to trace back identified errors
on the ASTD itself. Moreover, we highlight that additional
proof obligations can be added to the EB[ASTD] framework
by extending the core meta-model. The consistency of the
approach is formally established. Lastly, an example that

illustrates the application of our proposed framework through
meta-model instantiation is presented.
ASTD Mechanisation. The entire EB[ASTD] framework is
supported by the Rodin platform [12], which facilitates the
handling of Event-B models and proofs. The Rodin platform
has been set up to provide tool support, to facilitate formal
verification of ASTDs, and to automatically generate the
corresponding ASTD proof obligations (POs). Furthermore,
the ProB model checker [13] associated to Rodin facilitates
both the animation and model checking of ASTD models, en-
hancing the validation process. Additionally, we use VisB [14]
to provide a graphical representation of ASTD models, which
aids in animation and further improves the overall validation
process. All these features define the components of a com-
plete framework allowing to formally engineer ASTD models.
Organisation of this paper. Section II summarises the various
developments used to study ASTD models, including the use
of proof assistants and embedding mechanisms. Section III
provides an overview of the features of ASTD and Event-B
used in this paper. Sections IV and V present respectively the
EB[ASTD] framework we designed and show how to use it to
develop specific ASTD models. The definition and generation
of ASTD proof obligation is addressed in Section VI. Finally,
conclusion is presented along with future work in Section VII.

II. RELATED WORK

There were several attempts to handle ASTD for validation
and verification purposes. In general, each of them manage to
offer partial solutions but come with significant limitation.
eASTD and cASTD [15], [16]: eASTD is a graphical editor
for ASTD specifications. cASTD is a compiler that generates
C++ code implementing an ASTD specification. Generated
programs consider events from the environment and execute
them on the ASTD specification. ASTD actions are triggered
by events; they are written in C++ and they can use any
C++ libraries to execute code necessary in a given applica-
tion context, making ASTD very effective for constructing
industrial-strength control systems. The generated code can
be used as an efficient implementation of the specification,
with excellent response times. cASTD can also be used to
execute basic scenarios to validate a specification. However,
it does not offer the same rich animation features provided
by ProB [13] to explore various scenarios, like path search
that leads to a desired state, show events enabled in a given
state, backtrack the execution to explore a different execution
branch, or support of graphical animation of specification.
Translation of ASTD to Event-B [17]. This approach defines
a model-to-text transformation of ASTD into Event-B by
associating each composition operator to a pattern in Event-
B. This transformation relies on control variables to handle
ASTD operators. Since all variables in Event-B are global,
the translation results in a monolithic and flat Event-B model
where state invariants are hard to prove. Part of this translation
was verified in Coq [18], using a simulation relation.
pASTD [6]: pASTD enables the definition of invariants on
states on any ASTD. Thus both global invariants and local in-

variants can be defined. pASTD generates proof obligations in
the form of theorems in an Event-B context; it is implemented
as a Java plugin in Rodin. Then, Event-B provers are used
to discharge the proof obligations associated to the generated
context. Here, modifications of an ASTD are not reflected
back in the Event-B context initially generated; it must be
re-generated to obtain the new proof obligations, and proofs
completed on the initial version of the context are lost and
must be redone. The rules used by pASTD to generate the
proof obligations were informally justified. The correctness
proof of its Java code would be a tremendous effort.

The limitations of these approaches are mostly due to
their pragmatic conceptualisation. Each technology provides
a custom tool support for ASTD, which can introduce new
errors and makes it difficult to integrate several tools on
the same model. Moreover, the transformations are validated
empirically and verification is a posteriori i.e. on the result of
the transformation leading to a loss of the rich expressivity
provided by ASTDs. In addition, as they manipulate ASTD
instances, these approaches lack formal reasoning on the
ASTD modelling language itslef (no meta-model).

Actual deep embedding, promoted in our work, of mod-
elling languages into another is an effective technique used to
perform reasoning and model analysis. It helps to ensure the
foundational soundness of both core syntax and semantics of
the embedded languages. By doing so, system designers can
leverage the benefits of formal specifications and reasoning
mechanisms essential for designing complex systems. Here are
several efforts in this direction adopted in meta-modelling and
programming [19], DSL [20], reflexion [21], using PVS [22],
Coq [23], Isabelle/HOL [24] and Event-B [10].

For instance, in [25], the authors introduced a framework
within the MetaCoq project to specify and encode the se-
mantics of Coq, facilitating the development of a certified
meta-programming environment. This framework was suc-
cessfully implemented in the development of CertiCoq [26],
a certified compiler for Coq. Similarly, Isabelle/HOL [27]
was used to define HOL models and the reasoning mecha-
nisms necessary for describing complex systems with self-
replacement functionality. In [28], a construction and formal
proofs of equivalence between the operational and denota-
tional failure-divergence semantics in Isabelle/HOL-CSP [29],
using a shallow embedding, has been proposed. For the B
method [30], the authors of [31] presented a PVS formalisation
addressing the key concepts and core functionalities of B
operators. Additionnally, the context formalisation proposed
in [32] aims to provide explicitly defined theorems used to
express advanced reasoning capabilities on Event-B models.
The embedding approach is also used in [33] to formalise the
core semantics of Event-B and its refinement in CSP [34],
[35]. In [36] the EB4EB reflexive framework uses Event-B
to model Event-B. The semantics of Event-B is expressed as
a machine with events that express state transformations. It
enables the modelling of generic properties of Event-B models
and sufficient conditions to prove them. This framework is
extended in [37] to handle temporal properties and associated

2

Figure 1: A simple Automaton

reasoning. We rely on this approach for defining a meta-model
integrating both syntax and semantics of ASTDs as Event-B
algebraic theories.

In the same spirit of [36], [37], the proposed framework
invites the semantics of ASTDs in Event-B with its well-
established tool support Rodin. Event-B and its proof mech-
anism are reused for free. No additional tool or code has to
be written for proof obligation generation as it is the case for
pASTD. More importantly, EB[ASTD] allows us to formally
prove the correctness of pASTD proof obligation rules. The
ProB model checker has been applied for ASTD animation
remaining at a higher abstraction level, contrary to cASTD.

III. BACKGROUND

In this section, we provide an overview of ASTD and Event-
B that is required for understanding the meta-modeling and
reasoning concepts proposed in the rest of the paper.

A. Algebraic State Transition Diagram (ASTD)

Algebraic State Transition Diagrams (ASTD) [1] is a graph-
ical, state-based formalism designed to overcome the limita-
tions and lacks of languages such as state charts and UML
activity diagrams. They rely on automata-like diagrams that
may be composed using various operators borrowed from CSP,
and whose states may include ASTDs themselves, making it
possible to create complex hierarchies.

1) Automata and composition operators: Automaton
ASTD. An automaton ASTD (aut,Σ, Q, δ, F, q0, ν) is similar
to a traditional automaton, with the distinction that a state
can be complex and can itself include an ASTD, similar to
hierarchical states in Statecharts. In this structure, Σ denotes
the set of event labels (alphabet) of the automaton, while
Q represents the set of states. F ⊆ Q is the set of final
states. q0 ∈ Q is the initial state. ν ∈ Q → ASTD maps
each automaton state to a nested ASTD, with the ASTD type
Elementary being used when the state is atomic (i.e., not
hierarchical).

For a given ASTD, the transition relation is defined by δ ⊆
⟨η, σ, ϕ,final?⟩, where η denotes a transition arrow ⟨n1, n2⟩,
with n1, n2 respectively denoting the source and destination
states, σ ∈ Σ is an event, ϕ is a guard (predicate) for the
transition and final? is a Boolean to indicate that the source
state n1 must be final in order to trigger the transition.
Example. Fig 1 depicts an example of an Automaton A where
the states s0 and s1 of ASTD A are respectively mapped to
an elementary ASTD (A.ν(s0) = Elementary) and another
automaton B (A.ν(s1) = B).
Sequence ASTD (). A sequence ASTD, denoted with
⟨ , A1, A2⟩, represents the sequential composition of two

ASTDs. The composed ASTD starts execution in ASTD A1;
when A1 has reached its final state, ASTD A2 execution starts.
Closure ASTD (⋆). Closure ASTD ⟨⋆,A1⟩ allows ASTD A1

to be executed an arbitrary number of times. A1 can restart
from its initial state when it reaches a final state.
Guard ASTD (⇒). Guard ASTD ⟨⇒, g, A1⟩ checks that the
guard g is satisfied before executing the first transition of A1.
Note: g is not checked for the subsequent transitions of A1.

2) ASTD states: The transition relation of the operational
semantics is defined on the notion of ASTD state.
An Automaton state is a triplet ⟨aut◦, q, s⟩ where aut◦ is the
constructor for automaton state, q ∈ Q is the state name and
s the state of sub-ASTD ν(q). For simplicity we note Sa as
the set of all ASTD states of a. Hence, s ∈ Sa.ν(q).
A Sequence state is represented by (◦, i, s), where ◦ is the
constructor for sequence state, i ∈ {1, 2} is the index of the
running sub-ASTD, and s ∈ SAi

represents the ASTD state
of the running sub-ASTD.
A Closure state is represented as ⟨⋆◦, i, s⟩, where ⋆◦ is the
constructor for closure state, i ∈ {0, 1} indicates whether the
closure has started (i = 1) or not (i = 0), and s ∈ SA1 denotes
the current state of the sub-ASTD A1.
A Guard state is defined as ⟨⇒◦, i, s⟩, where ⇒◦ is the
constructor for guard state, i ∈ {0, 1} precises if the guard
is evaluated, and s ∈ SA1

is the state of the sub-ASTD A1.
The other ASTD operators are omitted for brevity; the

reader may refer to [38], [39] for more details.
Example. Fig 2 shows an ASTD drawn from [6] serving as
an illustrative example throughout the paper. ASTD A is a
closure of ASTD B, where ASTD B consists of a sequence
that combines ASTD C and ASTD E. ASTD C is a closure of
ASTD D, while ASTD E is a guard for ASTD F. Industrial
scale ASTD examples can be found in [2], [3], [40].

Figure 2: Illustrative example

3) Extending ASTD with state variables: Each non ele-
mentary ASTD is extended with the attributes ⟨V,Ainit, Inv⟩
where V is a set of local variables with read/write access for
its sub ASTDs, Ainit is the initialisation action for its local
variables V and Inv is the local invariant about local variables
and variables from enclosing ASTDs above in the hierarchy.
Elementary ASTD can only have invariant. State variables are
also called attributes.
State Variable update. In order to allow variable up-
date during execution, the automata transition relation δ ⊆
⟨η, σ,Atr, ϕ,final?⟩ is also extended to trigger an action
Atr upon accepting an event σ from the environment. The

3

ASTD Type ASTD State Description
(elem, Inv) elem◦

(aut,Σ, Q, δ, F, q0, ν, V, .., Inv) (aut◦, v, q, s) q ∈ Q, s ∈ Sa.ν(q)

(, A1, A2, V, Ainit, Inv) (◦, v, i, s) i ∈ 1..2 ∧ s ∈ SAi

(⋆,A1, V, Ainit, Inv) (⋆◦, v, i, s) i ∈ 0..1 ∧ s ∈ SA1

(⇒, g, A1, V, Ainit, Inv) (⇒◦, v, s) s ∈ SA1

Table I: ASTD syntax and ASTD state

ASTD Attributes Initialisation Invariant
A xA xA := 0 xA ≥ 0
B xB xB := xA + 1 xB > 0
C xC xC := 0 xB > xA

D xD xD := xC + 1 xD ≥ 0
E xE xE := xA xE ≥ 0 ∧ xE < xB

∧xE ≤ xA

F xF xF := 0 xF ≥ 0
S0 xD > xC ∧ xC ≥ 0
S1 xC ≥ xD ∧ xA > 0
S2 xF = 0 ∨ xA > xE

S3 xF > 0 ∧ xA > 2 ∗ xE

Table II: Attributes, Initialisations, and Invariants for ASTDs

initialisation action is triggered when the ASTD starts its
execution. Actions are abstracted as a relation between the
before and after values of the variables; the description of an
action language is omitted. In general, the initialisation is done
top-down, while transition actions are executed bottom-up.
Semantics of State Variables. In order to record the evolution
of variables, ASTD states are also extended to take into
account the valuation of variables. Each non elementary ASTD
state is associated to a field v ∈ V ar 7→ T that records the
current value of local variables. A summary of ASTD syntax
and ASTD states is given in Table I.

The illustrative example of Fig 2 is extended with variables,
actions and invariants (see Tables II and III). Note that the
guard for ASTD E is xB > xA + 4, and the guard for event
e3 is xA < 10000. The initial state for the same example is
given in Table IV. For simplicity, all variables are integers.

B. Event-B

Event-B [10] is a state-based formal method based on set
theory and first-order logic (FOL) for developing complex
systems using a correct-by-construction approach based on

Event Action
e1 xC := xC + xD; xB := xB + xC ; xA := xA + 1
e2 xA := xA + xB ; xF := xF + 1
e3 xA := xA − xE

Table III: Events and their corresponding actions

(⋆◦, {xA 7→ 0}, 0,
(◦, {xB 7→ 1}, 1,

(⋆◦, {xC 7→ 0}, 0,
(aut◦, {xD 7→ 1},

(s0 7→ elem◦)))))

Table IV: Initial state of ASTD A of Fig. 2

refinement. State transitions are triggered by events. Event-
B has been extended with several features, like the ability
to define new types using an algebraic approach. Figure V
shows an overview of the global architecture of the modelling
framework.

Context Machine Theory
CONTEXT Ctx MACHINE M THEORY Th
SETS s SEES Ctx IMPORT Th1, ...
CONSTANTS c VARIABLES x TYPE PARAMETERS E, F , ...
AXIOMS A INVARIANTS I(x) DATA TYPES
THEOREMS Tctx THEOREMS Tmch (x) Type1(E, ...)
END VARIANT V (x) constructors

EVENTS cstr1(p1 : T1 , ...)
EVENT evt OPERATORS

ANY α Op1 <nature> (p1 : T1 , ...)
WHERE Gi(x, α) well−definedness WD(p1, ...)
THEN direct definition D1
x :| BAP(α, x, x′) AXIOMATIC DEFINITIONS

END TYPES A1 , ...
... OPERATORS

END AOp2 <nature> (p1 : T1 , ...): Tr
well−definedness WD(p1, ...)

AXIOMS A1 , ...
THEOREMS T1 , ...
PROOF RULES R1 , ...
END

(a) (b) (c)

Table V: Structure of Event-B Contexts, Machines and Theo-
ries

(1.1) Theorems (THM) A ⇒ Tctx

(1.2) Theorems (THM) A ∧ IA(xA) ⇒ Tmch(x
A)

(2) Initialisation (INIT) A ∧ APA(αA, xA′) ⇒ IA(xA′)

(3) Invariant A ∧ IA(xA) ∧ GA(xA, αA)

preservation (INV) ∧BAPA(xA, αA, xA′) ⇒ IA(xA′)

(4) Event A ∧ IA(xA) ∧ GA(xA, αA)

feasibility (FIS) ⇒ ∃xA′ · BAPA(xA, αA, xA′)

(5) Variant A ∧ IA(xA) ∧ GA(xA, αA)

progress (VAR) ∧BAPA(xA, αA, xA′) ⇒ V (xA′) < V (xA)

Table VI: Machine Proof obligations

1) Event-B Contexts and Machines: Table V(a) shows
the syntax of Event-B Context, which defines the static
elements of a model using elementary components such as
sets s, constants c, axioms A. Table V(b) shows the syntax of
Event-B Machine, which represents the dynamic behaviour
using variables x, invariants I(x), theorems Tmch, variants
V (x) and events evt. Events use a Before-After Predicates
(BAP) to modify declared variables. Defined invariants and
theorems ensure safety properties, while defined variants are
useful to express convergence of events.

2) Refinement: is a powerful Event-B feature, not used in
this paper, allowing machines to be built gradually at various
abstraction levels while maintaining proved properties.

3) Proof Obligations (POs): Table VI outlines proof obli-
gations linked to Event-B models. They are generated auto-
matically by Rodin and must be discharged to ensure the cor-
rectness of the model. In this paper, the THM proof obligation
associated to contexts is extensively used.

4) Event-B extension with Theories: The expressiveness of
Event-B, which is based on set theory and first-order logic
(FOL), is adequate for modelling, reasoning, and simulating
system behaviours. However, it lacks to define new types,
operators, and proof mechanisms required for designing com-
plex systems and scaling them for future system development.
To address this limitation, the Theory Plug-in has been in-
troduced [11]. Table V(c) depicts the overall structure and
modelling components for developing new theories. This fea-

4

ture enables the development of custom data-types, operators,
definitions, and axioms. Additionally, theories facilitate poly-
morphic types, well-defined (WD) conditions for operators,
and reusable theorems. WD conditions act as preconditions
to ensure that the partially defined operators of a theory are
used correctly. WD proof obligations are generated when
an operator is applied. Multiple theories, including Real,
DiffEq [41], Ontology [42],. . . , have been developed to
address various aspects of modelling concepts.

5) Rodin IDE: Rodin [12] is an open-source Eclipse-based
Integrated Development Environment designed for developing
Event-B models and theories. It offers a range of features
including project management, model editing, model anima-
tion, refinement, proof management, and code generation.
ProB [13] and VisB [14] can be used within the Rodin IDE for
model checking and animating the developed specifications,
allowing to identify potential errors and deadlock checking.
Additionally, Rodin is equipped with advanced automated
proving mechanisms, such as SMT solvers and predicate
provers, which support both automated and interactive proof
reasoning. The theory plugins enable users to develop complex
theories that enhance Event-B modeling concepts. These de-
veloped theories are seamlessly integrated into the modeling
and proof processes, making them available for use during
system development.

IV. THE EB[ASTD] FRAMEWORK

The EB[ASTD] framework is grounded on Event-B and
its algebraic theories that allows reasoning on them. It is
inspired from the reflexive meta-modelling EB4EB frame-
work [36] defined for Event-B. The complete models are
available at https://www.irit.fr/EBRP/software/.
Set-based notation. In order to handle predicates as first-class
citizens in Event-B, we extensively use the axiom of com-
prehension together with set-theoretical notations. Typically, a
predicate P (x) is modelled as P̃ = {x | P (x)}, and the truth
value of P on a given x is represented as x ∈ P̃ . In addition,
set-theoretical operators (e.g., ⊆, ∩) are used to encode more
conveniently predicate connectors (e.g., respectively, ⇒, ∧).

A. Architecture of EB[ASTD]

As illustrated in Fig. 3, EB[ASTD] is based on a set
of algebraic data-types that reuse basic theories for natural
numbers and arrays. The theories for the core concepts of
ASTD are represented in the ASTD Core section of Fig. 3. The
ASTDStruct algebraic theory (presented in Sections IV-B
and IV-C) introduces the syntactic constructs of ASTDs and
their static semantics properties. A trace-based operational
semantics is described by the ASTDBehaviour theory (see
Section IV-D). The proof obligations together with their au-
tomatic generation are formalised in the ASTDPO Event-B
theory (detailed in Section VI-C). All of these theories together
define a denotational semantics for ASTD.

The ASTD PO Correctness area of Fig. 3 depicts the
framework’s architecture for consistency and soundness. The

ASTDCorrectness theory (Section VI-B) ensures the con-
sistency of these proof obligations using the trace-based se-
mantics described in the ASTDTraces theory.

Last, the Basic Theory of Fig. 3 are the basic mathemati-
cal building blocks grounding the whole framework (Peano,
associative arrays). They are not discussed in this paper.

Figure 3: Architecture of the meta-theory

B. Data types and constructors for ASTDs
Listing 1 presents the ASTDStruct Event-B theory. It

is central to the framework as it describes ASTD types
and ASTD states in a denotational style. It introduces three
polymorphic parameters: St for state names, Ev for events
(transition labels) and Var for state variables.
Note. For every development presented in this paper, variables
are associated to the hierarchical level (number) of decompo-
sition of the ASTD, using the mapping V ar 7→ Z.
THEORY ASTDStruct
TYPE PARAMETERS St , Ev , Var
DATA TYPES
ASTD(St ,Ev ,Var)
c o n s t r u c t o r s

E l e m e n t a r y (ElemInv : P(P(Var × Z))) / / i n v a r i a n t
Automaton (/ / (aut,Σ, Q, δ, F, q0, ν)

InitialState : St , / / q0
FinalState : P(St) , / / F
States : P(St) , / / Q
Event : P(Ev) , / / Σ
Transitions : P(Ev × (St × St)) , / / δ
...,
AutAttr : P(Var) , / / V
AutInitAttr : P(Var × Z) ↔ P(Var × Z) , / / Ainit

AutInv : P(P(Var × Z)) , / / i n v a r i a n t
Mapping : P(St × ASTD(St,Ev ,Var)) / / ν
)

Sequence (/ / ⟨ , A1, A2⟩
SeqFirst : ASTD(St,Ev ,Var) ,
SeqSnd : ASTD(St,Ev ,Var) ,
SeqAttr : P(Var) ,
SeqInitAttr : P(Var × Z) ↔ P(Var × Z) ,
SeqInv : P(P(Var × Z))
)

C l o s u r e (. . .)
Guard (. . .)

ASTDState (St ,Var)
c o n s t r u c t o r s

elem◦ ()
aut◦ (

AutCache : P(Var × Z) , / / s t o r e t h e v a l u e s o f v a r i a b l e s
StateName : St ,
AutSubState : ASTDState(St,Var)

)
seq◦ (

SeqCache : P(Var × Z) , / / s t o r e t h e v a l u e s o f v a r i a b l e s
Pos : Z , / / i n d e x o f c u r r e n t ASTD
SeqSubState : ASTDState(St,Var)

)
cls◦ (. . .)
grd◦ (. . .)

Listing 1: Data Type for ASTD

5

https://www.irit.fr/EBRP/software/

ASTD structure and states are formalised with the two
data-types, ASTD(St, Ev, Var) and ASTDState(St,
Var), that make use of the type parameters of the theory.
The ASTD(St, Ev, Var) data-type is equipped with five
constructors:

• Elementary represents a basic state with an invariant.
• Automaton models a state transition system with all

the components defining an ASTD automaton as de-
fined in Section III-A1 (states, transitions, invariants,
etc.). Transitions are themselves associated to guards and
actions with before and after state variables relations
P(Var × Z) ↔ P(Var × Z). To model ASTD hierar-
chy, Mapping introduces the decomposition of a given
automaton state into another ASTD.

• Sequence, Closure and Guard operators define
ASTD composition operators, following the definitions
of Section III-A1.

The ASTDState(St, Var) data-type defines the complex
notion of state in relation to the ASTD construct. It is
composed of:

• elem◦, represents an elementary (non-hierarchical) state.
• aut◦, represents the state of an automaton, consisting of

the values of state variables AutCache of that automa-
ton, a state label StateName and potential sub-states in
the case of hierarchical ASTD states.

• seq◦, cls◦ and grd◦ define the state resulting from com-
posed ASTDs. For example, in the case of Sequence,
the state is described by the current state variable value
SeqCache, the current position Pos in the sequence
(first or second ASTD) and its sub-state.

C. Well-defined ASTDs

The data-types previously defined, as well as construc-
tors and destructors, only contain typing information, which
may result in ill-defined instances. The second part of the
ASTDStruct theory provides necessary extra conditions, in
the form of predicates, for consistently defining ASTD.Such
conditions relate to the static semantics of ASTD. They are
formalised in the ASTDStruct theory through predicate
operators. Then, these predicates are used as well-definedness
(WD) conditions and thus generate associated proof obliga-
tions each time an ASTD or an ASTD state is manipulated.

This part describes, in Listings 2, 3 and 4 a set of
well-constructed operators to enhance the static semantics of
ASTDs. They are derived from the core ASTD modelling
language as well as from necessary hypotheses needed to
establish the well-definedness (WD) of the defined operators.

Listing 2 presents a list of operators with WD conditions
related to the actions associated to the transitions.

InitAction WellCons p r e d i c a t e (
attr : P(Var),
act : P(Var × Z) ↔ P(Var × Z))

d i r e c t d e f i n i t i o n
(∀env · env ∈ dom(act) ⇒

(env ∪ (attr ◁ act(env)) = act(env)))

InitActionS WellCons p r e d i c a t e (a : ASTD(St,Ev ,Var))
w e l l − d e f i n e d n e s s c o n d i t i o n ASTD WellTyped(a)

r e c u r s i v e d e f i n i t i o n
case a :

Elementary(inv) => ⊤
Automaton(i, ..., attr , initAttr , inv ,mapping) =>

InitAction WellCons(attr , initAttr)
∧(∀s · s ∈ allstate ⇒

InitActionS WellCons(mapping(s)))
Sequence(fst, snd, attr , initAttr , inv) =>

InitAction WellCons(attr , initAttr)
∧InitActionS WellCons(fst)
∧InitActionS WellCons(snd)

Closure(...) => ...
Guard(...) => ...

Listing 2: Operator InitActionS WellCons

The InitAction_WellCons operator, is declared with
two arguments: attr, a set of state variables, and an action act
which asserts that the action act modifies only the variables
in the scope of the action (◁ is a domain restriction operator).

In the same listing, the predicate operator
InitActionS_WellCons recursively applies predicate
InitAction_WellCons on each type of ASTD
(elementary, automaton, and the composition operators).
This definition is inductive and entails inductive case-based
reasoning when the proof obligations need to be discharged.

This kind of property definition and its replication on the
ASTD structure is extensively used in our models.

Automaton WellCons p r e d i c a t e (astd : ASTD(St,Ev ,Var))
r e c u r s i v e d e f i n i t i o n . . .

ASTD WellTyped p r e d i c a t e (a : ASTD(St,Ev ,Var))
w e l l − d e f i n e d n e s s c o n d i t i o n . . .
r e c u r s i v e d e f i n i t i o n . . .

Scope WellCons p r e d i c a t e (astd : ASTD(St,Ev ,Var) ,
accVar : P(Var)) / / accVar i s empty s e t f o r r o o t ASTD

w e l l − d e f i n e d n e s s c o n d i t i o n . . .
r e c u r s i v e d e f i n i t i o n

InvariantS WellCons p r e d i c a t e (astd : ASTD(St,Ev ,Var) ,
accVar : P(Var)) / / accVar i s empty s e t f o r r o o t ASTD

w e l l − d e f i n e d n e s s c o n d i t i o n
r e c u r s i v e d e f i n i t i o n . .

Listing 3: Other WellCons rules

Additional predicate operators formalise relevant properties
of ASTDs (Listing 3), ensuring that the structure of an
automaton is well defined (Automaton_WellCons), the
typing constraints are fulfilled (ASTD_WellTyped), state
variables of an ASTD hierarchy are not already declared in its
parent ASTDs (Scope_WellCons) and the local invariants
of an ASTD are defined correctly on the variables in its scope
(InvariantS_WellCons).

ASTD WellCons p r e d i c a t e
(a : ASTD(St,Ev ,Var) ,accVar : P(Var))

d i r e c t d e f i n i t i o n
Automaton WellCons(a)
∧ASTD WellTyped(a)
∧Scope WellCons(a, accVar)
∧InitActionS WellCons(a)
∧InvariantS WellCons(a, accVar)

Listing 4: Definition of operator ASTD well-constructed

Last, in Listing 4, all of the well-constructed properties
defining static semantics constraints are wrapped in a sin-
gle well-defined operator ASTD_WellCons. This operator

6

includes all of the well construction rules, representing the
necessary well-defined conditions associated with an ASTD.

The ASTD_WellCons operator is a conjunctive predicate.
When used in an Event-B model, it generates all of the well-
definedness proof obligations of all the operators that are
involved in its definition. Then, its proof uses the discharged
well-definedness conditions as hypotheses and its first applied
proof rule is the ∧-elimination rule. When discharged, the
associated WD POs are used as hypotheses for all remaining
proofs. In particular, their definition proved sufficient to estab-
lish the consistency of the defined semantics (see Section VI).

D. Operational semantics for ASTD

The next step consists in describing the behavioural seman-
tics of ASTDs as they define state transitions systems. An
operational semantics is described as a set of rules in the
ASTDBehaviour Event-B theory as shown in Listings 5
and 6. Following an ASTD structure-based definition, two
categories of rules are inductively defined for each ASTD
construct: one for the initialisation provided in Listing 5 and
the second for the induction step in Listing 6.

The algebraic theory ASTDBehaviour imports
ASTDStruct describing the structure of ASTDs and
similarly, it uses three type parameters St, Ev, and Var.

1) The initialisation rule (Listing 5): is an expressionwhere
its astd parameter is well defined. It returns the basic ASTD
state for elementary, builds, from the initial values of the
state variables, an ASTD state from an automaton aut◦, the
first ASTD state of a sequence, etc. The same definition is
provided for the other composition operators.

Note that in the case of operators other than elementary,
their definition collects recursively the initial states of the
potential ASTD hierarchy. This recursion stops when an
elementary ASTD is reached.

THEORY ASTDBehaviour
IMPORT THEORY ASTDStruct
TYPE PARAMETERS St , Ev , Var
OPERATORS

Init e x p r e s s i o n
(astd : ASTD(St,Ev ,Var) ,env : Var 7→ Z)

w e l l − d e f i n e d n e s s c o n d i t i o n
Automaton WellCons(astd), ...
r e c u r s i v e d e f i n i t i o n

case a s t d :
Elementary(...) =>

elem◦ : ASTDState(St,Var)
Automaton(i, ..., attr , initAttr ,inv ,mapping) =>

aut◦(
attr ◁ initAttr(env), / / i n i t i a l i z e l o c a l a t t r
i, / / t h e i n i t i a l s t a t e name
Init(mapping(i), initAttr(env)) / / r e c u r s i v e c a l l

)
Sequence(fst, snd, attr , initAttr , inv) =>

seq◦(
attr ◁ initAttr(env),
1, / / p o s i t i o n f s t
Init(fst, initAttr(env))

)
Closure(..) => . . .
Guard(...) => . . .

Listing 5: Operator Init from ASTD

2) The next state (progress) rule (Listing 6): It is defined
case by case, similarly to the initialisation. The NextState
operator of Listing 6, parametrised by an ASTD automaton
astd, event σ, current state curr, and environment Ee, returns
a pair of elements. The first element is the potential next state
derived from the current state curr after the occurrence of the
event σ according to the environment env. The second one is
the updated set of state variables after the actions are executed.

Here again, the definition collects recursively the next states
of the potential ASTD hierarchy (except for elementary). This
recursion stops when an elementary ASTD is reached.
NextState e x p r e s s i o n (astd : ASTD(St,Ev ,Var) ,σ : Ev ,

curr : ASTDState(St,Var) ,Ee : Var 7→ Z)
w e l l − d e f i n e d n e s s c o n d i t i o n ...
r e c u r s i v e d e f i n i t i o n

case a s t d :
Elementary(inv) => ...
Automaton(i, f, ..., inv ,mapping) =>

aut1 ∪ aut2 ∪ aut3
Sequence(fst, snd, attr , initAttr , inv) =>
Closure(..) => . . .
Guard(...) => . . .

Listing 6: Transitions rules from ASTD

To illustrate a transition rule of the operational semantics,
we have chosen to unfold the definition of the set aut2 in
the non-deterministic transition associated to the Automaton
constructor defined in [39]. The aut2 rule below defines the
semantic inference rule that produces the next ASTD state
(aut◦, n, E′, s′) and its environment from an internal transition

s
σ,Eg,E

′
g−−−−−→a.ν(n) s′ in the automaton a.ν(n) under a set of

hypotheses H .

s
σ,Eg,E

′
g−−−−−→a.ν(n) s

′ H
aut2

(aut◦, n, E, s)
σ,Ee,E

′
e−−−−−→a (aut◦, n, E′, s′)

In Listing 7, this inference rule is translated into Event-B as
a set of pairs composed of an ASTD state and an environment
collecting the state variables. Lines 1-4 provide definitions,
Line 5 corresponds to the antecedent of the aut2 rule. Finally,
Lines 6-8 define the assumed constraints and restrictions on
the environment state variables using overriding ◁−−, domain
subtraction ◁− and restriction ◁ operators.

{aut◦(E′, n, s′) 7→ E′
e | n,E , s, s′,E ′

e ,Eg ,E
′
g ,E

′·
1 . E ′

g ∈ Var 7→ Z
2 . ∧n = StateName(current)
3 . ∧s = AutSubState(current)
4 . ∧E = AutCache(current)
5 . ∧s′ 7→ E ′

g ∈ NextState(mapping(n), σ, s, Eg)
6 . ∧Eg = Ee ◁−− E / / The symbol ”◁−−” means o v e r r i d e by
7 . ∧E′

e = Ee ◁−− attr ◁−E ′
g / / ”◁−” means domain s u b t r a c t i o n

8 . ∧E′ = attr ◁ E ′
g / / ”◁” means domain r e s t r i c t i o n

}

Listing 7: Event-B definition of the aut2 inference rule

Each inference rule of the ASTD operational semantics
of [39] is expressed similarly in theory ASTDBehaviour.

V. MODELLING SPECIFIC ASTDS IN EB[ASTD]

Thanks to the ASTD meta-model defined in Section IV, it
is possible to define specific ASTDs (instances). Following

7

the EB4EB framework, two instantiation mechanisms are
possible. The first one, deep instantiation, is based on a direct
instantiation of the type parameters and on the application of
the defined composition operators. The second one, shallow
instantiation relies on a generic Event-B machine using the
specific operational semantics inference rules associated to
each ASTD constructor. It is used for animation purposes.

A. Deep Instantiation

This instantiation mechanism makes it possible to define
ASTD instances in an Event-B context, as concrete elements
of the ASTD data-types. A generic template of a context
corresponding to this instantiation mechanism is provided in
Listing 8. The generic type parameters of the ASTD theories
are instantiated with enumerated sets describing ASTD states,
events and variables.

CONTEXT ASTD Ctx
SETS St , Ev , Var
CONSTANTS

s0 , s1 , . . , / / a c o l l e c t i o n o f s t a t e n a m e s
e1 , e2 . . . , / / a c o l l e c t i o n o f e v e n t s
v1 , v2 . . . , / / a c o l l e c t i o n o f v a r i a b l e s
r o o t , B , C , D . . . , / / some ASTDs

AXIOMS
axm1 : partition(St, {s0}, {s1}, ..)
axm2 : partition(Ev , {e1}, {e2}, ...)
axm3 : partition(Var , {v1}, {v2}, ...)
/ / D e f i n e each ASTD by c o m p o s i t i o n
axm4 : C = Operator1(...)
axm5 : B = Operator2(C, ...)
axm6 : root = Operator3(B, ...)
/ / where Operatori ∈ {Automaton, Sequence, Closure,Guard}

THEOREMS
t h m o f w e l l d e f i n e d n e s s : ASTD WellCons(root, ∅)

END

Listing 8: Squeleton of deep instantiation

All core components of ASTDs, described in the ASTD-
Struct theory such as ASTD automaton, sequence and
operators, are provided in the axioms.

Theorem thm_of_welldefinedness uses the operator
ASTD_WellCons to ensure the consistency of the defined
ASTD. The generated THM PO must be discharged to ensure
the correctness of the instantiated model. In addition, other
POs related to the well-definedness conditions of the operators
borrowed from the ASTDStruct theory are also generated.
Application to the illustrative example of Fig 2. Listing 9
presents the Event-B context corresponding to the ASTD of
Fig 2. Enumerated sets are defined for Ev, St and Var in
axm1-3. The ASTD automaton root is defined in axm4. In
addition, a collection of axioms (axm12-17) is presented to
relate the elementary, automaton, and other composition
operators according to the example of Fig 2.

CONTEXT I l l u s t r a t i v e E x a m p l e
CONSTANTS

e1 , e2 , e3 ,
s0 , s1 , s2 , s3 ,
a s t d , B , C , D, E , F ,
xA , xB , xC , xD , xE , xF

AXIOMS
axm1 : partition(Ev , {e1}, {e2}, {e3})
axm2 : partition(St, {s0}, {s1}, {s2}, {s3})
axm3 : partition(Var , {xA}, ..., {xF})
axm4 : root ∈ ASTD(St,Ev ,Var)
. . .

axm12 :
F = Automaton(

s2 , / / i n i t i a l s t a t e
{s3}, / / f i n a l s t a t e s F
{s2 , s3}, / / a l l s t a t e names
{e2 , e3}, / / e v e n t s
{e2 7→ (s2 7→ s3), e3 7→ (s3 7→ s2)}, / / t r a n s i t i o n s
. . .
{xF}, / / a t t r i b u t e s
{...}, / / i n i t i a l i s a t i o n
{env · (env ∈ Var 7→ Z
∧xF ∈ dom(env) ∧ env(xF) ≥ 0) | env}, / / i n v a r i a n t

{...} / / h i e r a r c h y f u n c t i o n
)

axm13 : E = Guard({...}, F, {xE}, ...})
axm14 : D = Automaton(...)
axm15 : C = Closure(D, ...)
axm16 : B = Sequence(C,E, ...)
axm17 : root = Closure(B, ...)
THEOREMS
t h m o f w e l l d e f i n e d n e s s : ASTD WellCons(root, ∅)
END

Listing 9: A deep instance of the ASTD example

Finally, in the theorem clause, the ASTD_WellCons operator
is invoked to check the well-definedness of the ASTD, as well
as the correct use of ASTD compositional operators.

B. Shallow Instantiation for model animation

The availability of the Rodin tool suite represents one of
the benefits of using Event-B as the base formal modelling
language. Deep instantiation is useful in a proof perspective,
as well-definedness and theorem POs associated to an Event-B
context need to be discharged.

The second instantiation mechanism (so-called shallow in-
stantiation) available in Event-B consists in exploiting the
operational semantics introduced in Section IV-D. It relies on
the definition of a generic Event-B machine (see Listing 10)
with two events: an initialisation and a progress
event that respectively refer to the Init (see Listing 5)
and NextState (see Listing 6) operators corresponding
to the inference rules of the operational semantics. In this
machine, initialisation initialises the ASTD state with
current := Init(root, ∅), while progress applies an in-
ference rule and determines the next state as the projection
current := prj1(nxt) of the ASTD state returned by the
NextState operator.

MACHINE ShallowGenAnim
SEES ASTD Ctx
VARIABLES current
INVARIANTS

i nv1 : current ∈ ASTDState(St,Var)
EVENTS

INITIALISATION
THEN

a c t 1 : current := Init(root, ∅)
END
progress
ANY evnt , nxt
WHERE

grd1 : evnt ∈ Ev
grd2 : nxt ∈ NextState(root, evnt, current, ∅)
grd3 : NextState(root, evnt, current, ∅) ̸= ∅

THEN
a c t 1 : current := prj1(nxt)

END
END

Listing 10: Shallow generic machine for ASTD

8

Figure 4: VisB animation applied to ASTD

Animating this machine using the ProB [13] model checker
leads to a concrete trace of the ASTD (see bottom part
of Fig 4). Moreover, VisB [14] is used to perform visual
animation of ASTD operations. A visual animation (see Fig 4)
of the illustrative example is available at1. This animation
is used to validate the execution of ASTDs and to identify
potential flaws in the ASTD model.

Last, note that the Event-B machine of Listing 10 can be
refined. Indeed, the Progress event may be refined with the
specific transitions of an ASTD, leading to another mechanism
for instantiation. Here the interest is to check machine consis-
tency using the Event-B method itself (shallow embedding).
This approach is not presented in this paper.

VI. PROOF OBLIGATIONS FOR ASTDS

The last building block of our framework enables the
definition of proof obligations, checking their soundness and
generating the proof obligations for a given ASTD model. We
show how our framework exploits the Rodin Event-B IDE, in
particular its proof capabilities, to encode POs. To illustrate
our approach, we demonstrate the case of the state invariant
POs defined in pASTD [6].

A. Definition of proof obligations in Event-B

Proof obligations are defined as predicates modelling a
property on ASTDs. Listing 11 shows the Event-B template
we use to define a PO.

The Event-B theory ASTDPO, importing ASTDBehaviour
defined in Section IV-D, introduces two predicate operators
to model the inductive invariant PO: one for the initialisation
and the second one for the inductive case. These two predicate
operators invoke the operational semantics operators init and
NextState defined in the imported theory.

1 https://www.irit.fr/EBRP/software/

THEORY ASTDPO
IMPORT THEORY ASTDBehaviour
TYPE PARAMETERS St, Ev, V ar
OPERATORS

POi p r e d i c a t e (a : ASTD(St,Ev ,Var), ...)
w e l l − d e f i n e d n e s s c o n d i t i o n
r e c u r s i v e d e f i n i t i o n . . .

POtr p r e d i c a t e (a : ASTD(St,Ev ,Var), ...)
w e l l − d e f i n e d n e s s c o n d i t i o n
r e c u r s i v e d e f i n i t i o n . . .

Listing 11: Deep modeling of POs

Proceeding this way, we obtain a denotational-based defi-
nition. Note that other predicate operators may be defined to
model other properties or proof obligations.

B. Proof obligation consistency

Once a PO is defined, it is important to check that it
is consistent. For this, we rely on the defined operational
semantics, and have introduced trace-based semantics for
ASTDs. The objective is to check that the POs associated
to the denotational semantics entail their specification on the
traces.

Listing 12 lays out the theory ASTDTraces, describing
the notion of ASTD traces adopted from [43]. It imports the
ASTDPO theory, defining proof obligations.
THEORY ASTDTraces
IMPORT THEORY ASTDPO
TYPE PARAMETERS St , Ev , Var
OPERATORS

IsANextState p r e d i c a t e (a : ASTD(St,Ev ,Var) ,
s, sp : ASTDState(St,Var))

w e l l − d e f i n e d n e s s c o n d i t i o n ASTD WellCons(a, ∅)
d i r e c t d e f i n i t i o n
(∃e · e ∈ Ev ⇒ sp ∈ dom(NextState(a, e, s, ∅)))

IsATrace p r e d i c a t e (a : ASTD(St,Ev ,Var) ,
tr : N 7→ ASTDState(St,Var))

w e l l − d e f i n e d n e s s c o n d i t i o n ASTD WellCons(a, ∅)
d i r e c t d e f i n i t i o n

1− tr(0) = Init(a, ∅)
2− ∧ (∀i, j · i ∈ dom(tr) ∧ j ∈ dom(tr) ∧ j = i + 1 ⇒

IsANextState(a, tr(i), tr(j)))
3− ∧ (tr ∈ N → ASTDState(St,Var) ∨ / / i n f i n i t e t r a c e

(∃n · n ∈ N ∧ tr ∈ 0..n → ASTDState(St,Var)
∧ (¬CanProgress(a, tr(n))))) / / f i n i t e t r a c e

Listing 12: Trace-based semantic for ASTD

In this theory, the IsATrace predicate operator is pa-
rameterised by an ASTD and a trace tr : N 7→
ASTDState(St ,Var), which is a sequence (s0 7→ s1 7→ ... 7→
sn) of ASTD states. IsATrace uses the inference rules of the
operational semantics previously defined in Section IV-D, and
asserts that:

1) the first state of an ASTD trace (tr(0)) corresponds
to the initialisation of the upper ASTD, i.e. s0 =
Init(a, ∅).

2) for each consecutive state si 7→ si+1, si+1 is the
next state of si after an event is triggered. It uses the
IsANextState predicate operator, defined in the same
theory, to check that tr(i) and tr(i + 1) are correct
consecutive ASTD states.

3) traces can either be infinite and deadlock-free, or finite
and deadlocking.

9

https://www.irit.fr/EBRP/software/

By leveraging this definition of traces, we may encode the
specification of proof obligations in terms of properties on
the trace. In the case of the ASTD state invariant PO, the
associated specification is that the invariant of the machine
holds on every state of the trace. It is formalised by the
InvSpecOnState predicate operator defined for an ASTD
state (see Listing 13).
THEORY ASTDCorrectness
IMPORT THEORY ASTDTraces
TYPE PARAMETERS St , Ev , Var
OPERATORS

InvSpecOnState p r e d i c a t e
(a : ASTD(St,Ev ,Var), s : ASTDState(St,Var))

w e l l − d e f i n e d n e s s c o n d i t i o n . . .
r e c u r s i v e d e f i n i t i o n

case a :
Elementary(...) => · · ·
Automaton(...) => · · ·
Sequence(...) => · · ·
Closure(..) => · · ·
Guard(...) => · · ·

Listing 13: Definition of satisfying invariants

thm of PO Correctness :
∀astd, tr ·

astd ∈ ASTD(St,Ev ,Var) / / f o r a l l a s t d
∧ASTD WellCons(astd, ∅) / / w e l l cons

∧tr ∈ N 7→ ASTDState(St,Var) / / and t r a c e
∧IsATrace(astd, tr) / / o f t h e a s t d

∧POtr(astd,Var 7→ Z, ∅) / / when POs ho ld
∧POi(astd,Var 7→ Z,Var 7→ Z, (Var 7→ Z) ◁ id)
⇒
(∀i · i ∈ dom(tr) ⇒ InvSpecOnState(astd, tr(i)))
/ / e v e r y s t a t e i n t h e t r a c e s a t i s f i e s t h e i n v a r i a n t

Listing 14: Ultimate theorem of PO correctness

Listing 14 shows the consistency theorem. When the
proof obligation denoted encoded by the POi and POtr

predicates hold, it states that each state in tr satisfies the
InvSpecOnState property.

The proof of this theorem needed several intermediate
lemmas to be proved. In particular it required the proof of
properties related to the operational semantics that identified
some errors in the manual specification [6], [38] which have
been corrected and reported to the authors.

C. Adding the Generation of proof obligations

The process of discharging the proof obligations is straight-
forward. It requires to add the definition of the predicates that
define the PO in a theorem clause of a context resulting from
a deep instantiation.
CONTEXT ASTD Ctx PO
EXTENDS ASTD Ctx
THEOREMS

G e n e r a t i o n o f P O i : POi(root, ...)
G e n e r a t i o n o f P O t r : POtr(root, ...)

END

Listing 15: Automatic generation of PO from ASTD

Listing 15 shows a context extending the deep instantiation
context ASTD Ctx PO of Listings 8 and 9 with two the-
orems. The Event-B THM PO(see Table VI) generated for
theorems carries the invariant PO for ASTDs.

Note that the development shown above applies to all kinds
of proof obligations defined for ASTDs.

VII. CONCLUSION AND FUTURE WORK

This paper presented embeddings of ASTD in Event-B
using algebraic theories and Rodin, the Event-B IDE.

A deep embedding allows for the definition of the ASTD
abstract syntax and its well-construction conditions, as well as
its operational and trace semantics. An approach for defining
proof obligations for ASTD properties has been defined. It is
illustrated on the proof obligations for ASTD state invariants
introduced in [6]. Their soundness has been formally proved
and minor errors were found in the original definitions of the
authors. It illustrates the benefits of such a formalisation.

An ASTD specification can be instantiated in the theory in
the form of an Event-B context that uses the ASTD theory.
Well-construction properties can be proved, to ensure the
structural validity of the ASTD specification. State invariant
proof obligations for an ASTD specification can be generated
and discharged using the Event-B proof system.

The ASTD specification can also be animated using ProB,
by executing a generic Event-B machine that contains two
events, init and progress, and which uses the context rep-
resenting the ASTD specification. VisB can also be used
to graphically represent the ASTD specification while it is
animated using ProB, and display its current state and current
values of its state variables. Rodin, ProB and VisB now
provide a complete environment for specifying, verifying and
validating ASTD specification, without having to write cus-
tom tools from scratch, avoiding implementation errors, and
facilitating the traceability of errors found during verification
and validation to their source in an ASTD specification.

We believe that the EB[ASTD] framework represents a
significant improvement over existing ASTD tools, which
consisted mainly of shallow embeddings in the form of model-
to-text transformations. Moreover, in case of identified flaws
in the ASTD models, this framework offers a trace back to
the original ASTD models in terms of ASTD constructs. This
facility avoids users to master target modelling languages in
case of model-to-text transformations.

For simplicity, the current ASTD theory is defined on inte-
ger ASTD state variables. This is not a limitation as it could
be overcome by the introduction of a generic axiomatisation
of types. Such axiomatisation, already available in EB4EB,
through universal types, could be reused for EB[ASTD].

Last, the availability of a meta-model for ASTD opens
the path to defining model-to-model transformations and
guaranteeing their correctness. For example, a transformation
between the EB[ASTD] and the EB4EB meta-models could
be defined, and its soundness checked using a (bi-)simulation
relationship on the traces. The other path opened by this
approach is the possibility to use first order logic as an
exchange format. Indeed, in the case of deep embedding,
an ASTD is defined in an Event-B context as a FOL term.
Exporting such a representation in other proof assistants, to
exploit their capabilities, thus becomes possible.

10

REFERENCES

[1] M. Frappier, F. Gervais, R. Laleau, and J. Milhau, “Refinement patterns
for ASTDs,” Formal Aspects Comput., vol. 26, no. 5, pp. 919–941,
2014. [Online]. Available: https://doi.org/10.1007/s00165-013-0286-3

[2] A. R. Ndouna and M. Frappier, “Modelling a mechanical lung
ventilation system using TASTD,” in Rigorous State-Based Methods -
10th International Conference, ABZ 2024, Bergamo, Italy, June 25-28,
2024, Proceedings, ser. Lecture Notes in Computer Science, S. Bonfanti,
A. Gargantini, M. Leuschel, E. Riccobene, and P. Scandurra, Eds.,
vol. 14759. Springer, 2024, pp. 324–340. [Online]. Available:
https://doi.org/10.1007/978-3-031-63790-2 26

[3] D. de Azevedo Oliveira and M. Frappier, “Modelling an automotive
software system with TASTD,” in Rigorous State-Based Methods
- 9th International Conference, ABZ 2023, Nancy, France, May
30 - June 2, 2023, Proceedings, ser. Lecture Notes in Computer
Science, U. Glässer, J. C. Campos, D. Méry, and P. A. Palanque,
Eds., vol. 14010. Springer, 2023, pp. 124–141. [Online]. Available:
https://doi.org/10.1007/978-3-031-33163-3 10

[4] L. N. Tidjon, M. Frappier, M. Leuschel, and A. Mammar, “Extended
algebraic state-transition diagrams,” in 23rd International Conference on
Engineering of Complex Computer Systems, ICECCS 2018, Melbourne,
Australia, December 12-14, 2018. IEEE Computer Society, 2018,
pp. 146–155. [Online]. Available: https://doi.org/10.1109/ICECCS2018.
2018.00023

[5] D. de Azevedo Oliveira and M. Frappier, “TASTD: A real-time
extension for ASTD,” in Rigorous State-Based Methods - 9th
International Conference, ABZ 2023, Nancy, France, May 30 - June
2, 2023, Proceedings, ser. Lecture Notes in Computer Science,
U. Glässer, J. C. Campos, D. Méry, and P. A. Palanque, Eds.,
vol. 14010. Springer, 2023, pp. 142–159. [Online]. Available:
https://doi.org/10.1007/978-3-031-33163-3 11

[6] Q. Cartellier, M. Frappier, and A. Mammar, “Proving local invariants
in ASTDs,” in Formal Methods and Software Engineering - 24th
International Conference on Formal Engineering Methods, ICFEM
2023, Brisbane, QLD, Australia, November 21-24, 2023, Proceedings,
ser. Lecture Notes in Computer Science, Y. Li and S. Tahar,
Eds., vol. 14308. Springer, 2023, pp. 228–246. [Online]. Available:
https://doi.org/10.1007/978-981-99-7584-6 14

[7] T. Fayolle, M. Frappier, R. Laleau, and F. Gervais, “Formal refinement of
extended state machines,” in Proceedings 17th International Workshop
on Refinement, Refine@FM 2015, Oslo, Norway, 22nd June 2015, ser.
EPTCS, J. Derrick, E. A. Boiten, and S. Reeves, Eds., vol. 209, 2015,
pp. 1–16. [Online]. Available: https://doi.org/10.4204/EPTCS.209.1

[8] J. Milhau, M. Frappier, F. Gervais, and R. Laleau, “Systematic
translation rules from ASTD to Event-B,” in Integrated Formal Methods
- 8th International Conference, IFM 2010, Nancy, France, October
11-14, 2010. Proceedings, ser. Lecture Notes in Computer Science,
D. Méry and S. Merz, Eds., vol. 6396. Springer, 2010, pp. 245–259.
[Online]. Available: https://doi.org/10.1007/978-3-642-16265-7 18

[9] L. N. Tidjon, M. Frappier, and A. Mammar, “Intrusion detection
using ASTDs,” in Advanced Information Networking and Applications
- Proceedings of the 34th International Conference on Advanced
Information Networking and Applications, AINA-2020, Caserta, Italy,
15-17 April, ser. Advances in Intelligent Systems and Computing,
L. Barolli, F. Amato, F. Moscato, T. Enokido, and M. Takizawa,
Eds., vol. 1151. Springer, 2020, pp. 1397–1411. [Online]. Available:
https://doi.org/10.1007/978-3-030-44041-1 118

[10] J.-R. Abrial, Modeling in Event-B: System and Software Engineering.
Cambridge University Press, 2010.

[11] M. J. Butler and I. Maamria, “Practical theory extension in Event-B,”
in Theories of Programming and Formal Methods - Essays Dedicated
to Jifeng He on the Occasion of His 70th Birthday, ser. Lecture
Notes in Computer Science, Z. Liu, J. Woodcock, and H. Zhu,
Eds., vol. 8051. Springer, 2013, pp. 67–81. [Online]. Available:
https://doi.org/10.1007/978-3-642-39698-4 5

[12] J.-R. Abrial, M. Butler, S. Hallerstede, T. S. Hoang, F. Mehta, and
L. Voisin, “Rodin: an open toolset for modelling and reasoning in Event-
B,” International Journal on Software Tools for Technology Transfer,
vol. 12, no. 6, pp. 447–466, 2010.

[13] M. Leuschel and M. J. Butler, “Prob: A model checker for B,” in FME
2003: Formal Methods, International Symposium of Formal Methods
Europe, Pisa, Italy, September 8-14, 2003, Proceedings, ser. Lecture
Notes in Computer Science, K. Araki, S. Gnesi, and D. Mandrioli,

Eds., vol. 2805. Springer, 2003, pp. 855–874. [Online]. Available:
https://doi.org/10.1007/978-3-540-45236-2 46

[14] M. Werth and M. Leuschel, “Visb: A lightweight tool to visualize formal
models with SVG graphics,” in Rigorous State-Based Methods - 7th
International Conference, ABZ 2020, Ulm, Germany, May 27-29, 2020,
Proceedings, ser. Lecture Notes in Computer Science, A. Raschke,
D. Méry, and F. Houdek, Eds., vol. 12071. Springer, 2020, pp. 260–265.
[Online]. Available: https://doi.org/10.1007/978-3-030-48077-6 21

[15] L. Nganyewou Tidjon, “Formal modeling of intrusion detection
systems,” Theses, Institut Polytechnique de Paris ; Université de
Sherbrooke (Québec, Canada), Nov. 2020. [Online]. Available:
https://theses.hal.science/tel-03137661

[16] ASTD Team. cASTD and eASTD. [Online]. Available: https:
//github.com/DiegoOliveiraUDES/ASTD-tools

[17] J. Milhau, “Un processus formel d’intégration de politiques de contrôle
d’accès dans les systèmes d’information,” Theses, Université Paris-Est
; Université de Sherbrooke (Québec, Canada), Dec. 2011. [Online].
Available: https://theses.hal.science/tel-00674865

[18] T. Fayolle, “Combinaison de méthodes formelles pour la spécification
de systèmes industriels,” Theses, Université Paris-Est ; Université
de Sherbrooke (Québec, Canada), Jun. 2017. [Online]. Available:
https://theses.hal.science/tel-01743832

[19] G. Ebner, S. Ullrich, J. Roesch, J. Avigad, and L. de Moura, “A
metaprogramming framework for formal verification,” vol. 1, no. ICFP,
2017.

[20] M. Mernik, J. Heering, and A. M. Sloane, “When and how to develop
domain-specific languages,” ACM Comput. Surv., vol. 37, no. 4,
p. 316–344, Dec. 2005. [Online]. Available: https://doi.org/10.1145/
1118890.1118892

[21] K.-D. Schewe, F. Ferrarotti, and S. González, “A logic for reflective
asms,” Science of Computer Programming, vol. 210, p. 102691, 2021.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0167642321000848

[22] S. Owre, J. M. Rushby, and N. Shankar, “PVS: A prototype verification
system,” in 11th International Conference on Automated Deduction -
CADE, ser. LNCS, D. Kapur, Ed., vol. 607. Springer, 1992, pp. 748–
752.

[23] Y. Bertot and P. Castran, Interactive Theorem Proving and Program De-
velopment: Coq’Art The Calculus of Inductive Constructions. Springer
Publishing Company, Incorporated, 2010.

[24] T. Nipkow, M. Wenzel, and L. C. Paulson, Isabelle/HOL: A Proof
Assistant for Higher-order Logic. Springer-Verlag, 2002.

[25] M. Sozeau, A. Anand, S. Boulier, C. Cohen, Y. Forster, F. Kunze,
G. Malecha, N. Tabareau, and T. Winterhalter, “The MetaCoq Project,”
J. Autom. Reason., vol. 64, no. 5, pp. 947–999, 2020.

[26] A. Anand, A. Appel, G. Morrisett, Z. Paraskevopoulou, R. Pollack, O. S.
Belanger, M. Sozeau, and M. Weaver, “Certicoq: A verified compiler
for Coq,” in The third international workshop on Coq for programming
languages (CoqPL), 2017.

[27] B. Fallenstein and R. Kumar, “Proof-producing reflection for HOL -
with an application to model polymorphism,” in Interactive Theorem
Proving - 6th International Conference, ITP, ser. LNCS, C. Urban and
X. Zhang, Eds., vol. 9236. Springer, 2015, pp. 170–186.

[28] B. Ballenghien and B. Wolff, “An Operational Semantics in
Isabelle/HOL-CSP,” in 15th International Conference on Interactive
Theorem Proving (ITP 2024), ser. Leibniz International Proceedings
in Informatics (LIPIcs), Y. Bertot, T. Kutsia, and M. Norrish,
Eds., vol. 309. Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2024, pp. 7:1–7:18. [Online]. Available:
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2024.7

[29] S. Taha, L. Ye, and B. Wolff, “Hol-csp version 2.0,” Archive of Formal
Proofs, April 2019, https://isa-afp.org/entries/HOL-CSP.html, Formal
proof development.

[30] J.-R. Abrial, The B Book - Assigning Programs to Meanings. Cambridge
University Press, August 1996.

[31] C. Muñoz and J. Rushby, “Structural embeddings: Mechanization with
method,” in International Symposium on Formal Methods. Springer,
1999, pp. 452–471.

[32] J.-P. Bodeveix and M. Filali, “Event-b formalization of Event-B con-
texts,” in Rigorous State-Based Methods, A. Raschke and D. Méry, Eds.
Cham: Springer International Publishing, 2021, pp. 66–80.

[33] S. A. Schneider, H. Treharne, and H. Wehrheim, “A CSP account
of Event-B refinement,” in 15th International Refinement Workshop,

11

https://doi.org/10.1007/s00165-013-0286-3
https://doi.org/10.1007/978-3-031-63790-2_26
https://doi.org/10.1007/978-3-031-33163-3_10
https://doi.org/10.1109/ICECCS2018.2018.00023
https://doi.org/10.1109/ICECCS2018.2018.00023
https://doi.org/10.1007/978-3-031-33163-3_11
https://doi.org/10.1007/978-981-99-7584-6_14
https://doi.org/10.4204/EPTCS.209.1
https://doi.org/10.1007/978-3-642-16265-7_18
https://doi.org/10.1007/978-3-030-44041-1_118
https://doi.org/10.1007/978-3-642-39698-4_5
https://doi.org/10.1007/978-3-540-45236-2_46
https://doi.org/10.1007/978-3-030-48077-6_21
https://theses.hal.science/tel-03137661
https://github.com/DiegoOliveiraUDES/ASTD-tools
https://github.com/DiegoOliveiraUDES/ASTD-tools
https://theses.hal.science/tel-00674865
https://theses.hal.science/tel-01743832
https://doi.org/10.1145/1118890.1118892
https://doi.org/10.1145/1118890.1118892
https://www.sciencedirect.com/science/article/pii/S0167642321000848
https://www.sciencedirect.com/science/article/pii/S0167642321000848
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2024.7
https://isa-afp.org/entries/HOL-CSP.html

Refine@FM, ser. EPTCS, J. Derrick, E. A. Boiten, and S. Reeves, Eds.,
vol. 55, 2011, pp. 139–154.

[34] C. A. R. Hoare, “Communicating sequential processes,” Commun. ACM,
vol. 21, no. 8, pp. 666–677, 1978.

[35] S. A. Schneider, H. Treharne, and H. Wehrheim, “A CSP approach
to control in Event-B,” in Integrated Formal Methods - 8th
International Conference, IFM 2010, Nancy, France, October 11-14,
2010. Proceedings, ser. Lecture Notes in Computer Science, D. Méry
and S. Merz, Eds., vol. 6396. Springer, 2010, pp. 260–274. [Online].
Available: https://doi.org/10.1007/978-3-642-16265-7 19

[36] P. Rivière, N. K. Singh, and Y. Aı̈t-Ameur, “Reflexive Event-B:
Semantics and correctness the EB4EB framework,” IEEE Trans.
Reliab., vol. 73, no. 2, pp. 835–850, 2024. [Online]. Available:
https://doi.org/10.1109/TR.2022.3219649

[37] P. Riviere, N. K. Singh, Y. Aı̈t-Ameur, and G. Dupont, “Formalising
Liveness Properties in Event-B with the Reflexive EB4EB Framework,”
2023.

[38] D. de Azevedo Oliveira and M. Frappier, “TASTD: A real-time
extension for ASTD,” in Rigorous State-Based Methods - 9th
International Conference, ABZ 2023, Nancy, France, May 30 - June
2, 2023, Proceedings, ser. Lecture Notes in Computer Science,
U. Glässer, J. C. Campos, D. Méry, and P. A. Palanque, Eds.,
vol. 14010. Springer, 2023, pp. 142–159. [Online]. Available:
https://doi.org/10.1007/978-3-031-33163-3 11

[39] ——, “Technical report 27 - Extending ASTD with real-time,”
Université de Sherbrooke, Tech. Rep., 2024. [Online]. Available:
https://marcfrappier.espaceweb.usherbrooke.ca/Papers/report-27.pdf

[40] C. E. Jabri, M. Frappier, T. Ecarot, and P. Tardif, “Development of
monitoring systems for anomaly detection using ASTD specifications,”
in Theoretical Aspects of Software Engineering - 16th International
Symposium, TASE 2022, Cluj-Napoca, Romania, July 8-10, 2022,
Proceedings, ser. Lecture Notes in Computer Science, Y. Aı̈t-Ameur
and F. Craciun, Eds., vol. 13299. Springer, 2022, pp. 274–289.
[Online]. Available: https://doi.org/10.1007/978-3-031-10363-6 19

[41] G. Dupont, Y. Aı̈t-Ameur, N. K. Singh, and M. Pantel, “Event-B
hybridation: A proof and refinement-based framework for modelling
hybrid systems,” ACM Trans. Embed. Comput. Syst., vol. 20, no. 4, pp.
35:1–35:37, 2021. [Online]. Available: https://doi.org/10.1145/3448270

[42] I. Mendil, Y. Aı̈t-Ameur, N. K. Singh, G. Dupont, D. Méry,
and P. A. Palanque, “Formal domain-driven system development
in Event-B: Application to interactive critical systems,” J. Syst.
Archit., vol. 135, p. 10pas98, 2023. [Online]. Available: https:
//doi.org/10.1016/j.sysarc.2022.102798

[43] P. Riviere, N. K. Singh, and Y. Aı̈t-Ameur, “EB4EB: A framework for
reflexive Event-B,” in 26th International Conference on Engineering
of Complex Computer Systems, ICECCS 2022, Hiroshima, Japan,
March 26-30, 2022, 2022, pp. 71–80. [Online]. Available: https:
//doi.org/10.1109/ICECCS54210.2022.00017

12

https://doi.org/10.1007/978-3-642-16265-7_19
https://doi.org/10.1109/TR.2022.3219649
https://doi.org/10.1007/978-3-031-33163-3_11
https://marcfrappier.espaceweb.usherbrooke.ca/Papers/report-27.pdf
https://doi.org/10.1007/978-3-031-10363-6_19
https://doi.org/10.1145/3448270
https://doi.org/10.1016/j.sysarc.2022.102798
https://doi.org/10.1016/j.sysarc.2022.102798
https://doi.org/10.1109/ICECCS54210.2022.00017
https://doi.org/10.1109/ICECCS54210.2022.00017

	Introduction
	Related work
	Background
	Algebraic State Transition Diagram (ASTD)
	 Automata and composition operators
	ASTD states
	Extending ASTD with state variables

	Event-B
	Event-B Contexts and Machines
	Refinement
	Proof Obligations (POs)
	Event-B extension with Theories
	Rodin IDE

	The EB[ASTD] Framework
	Architecture of EB[ASTD]
	Data types and constructors for ASTDs
	Well-defined ASTDs
	Operational semantics for ASTD
	The initialisation rule (Listing 5)
	The next state (progress) rule (Listing 6)

	Modelling specific ASTDs in EB[ASTD]
	Deep Instantiation
	Shallow Instantiation for model animation

	Proof Obligations for ASTDs
	Definition of proof obligations in Event-B
	Proof obligation consistency
	Adding the Generation of proof obligations

	Conclusion and Future work
	References

