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Abstract—Ensemble deep learning (EDL) has emerged as a
leading tool for epistemic uncertainty quantification (UQ) in
predictive modelling. Our study focuses on the utilization of EDL,
composed of auto-encoders (AEs) for out-of-distribution (OoD)
detection. EDL offers straightforward interpretability and valu-
able practical insights. Conventionally, employing multiple AEs
in an ensemble requires regular training for each model whenever
substantial changes occur in the data, a process that can become
computationally expensive, especially when dealing with large
ensembles. To address this computational challenge, we introduce
an innovative strategy that treats ensemble UQ as a regression
problem. During initial training, once the uncertainty distribution
is established, we map this distribution to one ensemble member.
This approach ensures that during subsequent trainings and
inferences, only one ensemble member and the regression model
are needed to predict uncertainties, eliminating the need to
maintain the entire ensemble. This streamlined approach is
particularly advantageous for systems with limited computational
resources or situations that demand rapid decision-making,
such as alert management in cybersecurity. Our evaluations on
five benchmark OoD detection data sets demonstrate that the
uncertainty estimates obtained with our proposed method can,
in most cases, align with the uncertainty distribution learned by
the ensemble, all while significantly reducing the computational
resource requirements.

Index Terms—Uncertainty quantification; Ensemble of auto-
encoders; Out of distribution detection; Unsupervised learning.

I. INTRODUCTION

Auto-encoders (AEs), an unsupervised deep learning (DL)
model, have emerged as highly effective tools in a wide range
of classification tasks, with a notable strength in detecting
out-of-distribution (OoD) data points. OoD detection is re-
lated to anomaly detection [I]—while both OoD detection
and anomaly detection involve identifying deviations from
expected patterns within the data set, OoD detection focuses on
recognizing instances that lie outside data set even if they are
not necessarily anomalous. Identifying OoD instances often
involves further investigation to discern whether they represent
anomalies or new normal patterns. Given the challenge of
limited labelled data in OoD systems, supervised learning is
often impractical. AEs are gaining popularity in fields such as
anomaly detection [1], computer vision [2], and image search
[3]. AEs accomplish the task of identifying OoD instances
by initially learning from expected behaviour. However, the
performance of OoD detection methods can vary significantly
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depending on the specific application context [4]. An important
capability expected from AEs is the ability to gauge their
own predictive confidence accurately, especially that AEs are
reported to suffer from overconfidence issues [5]. This presents
a notable challenge, as assessing the confidence of predictive
models is inherently difficult due to the typical unavailability
of ground truth uncertainty distributions. Here, a prediction is
both a classification decision (as is an instance anomalous?)
and an assessment of uncertainty (as is the decision doubtful?).

A crucial aspect of a DL model’s reliability is its ability
to assess and communicate its level of confidence in its
decisions, which significantly contributes to transparency and
trustworthiness [6]. Building trustworthy DL models entails
considering various factors, including the presence of uncer-
tainty in classification decisions. Numerous applications, such
as cybersecurity, banking, and nuclear systems, demand the
use of reliable DL models. For example, security analysts often
confront a high volume of alerts while having limited process-
ing resources at their disposal [7]. In such cases, employing an
uncertainty measure can aid in prioritizing alerts, ensuring that
the most certain ones (i.e., classification decisions associated
with low uncertainties) are addressed first. This same principle
applies to credit approval processes in banking systems [§]
and sensor failure detection in nuclear systems [9]. Therefore,
uncertainty quantification (UQ) plays a pivotal role in allowing
a DL model to acknowledge classification decisions that
carry a substantial degree of uncertainty. Ignoring predictive
uncertainty can result in erroneous classification decisions,
potentially leading to severe consequences [10].

Various UQ techniques, such as Monte Carlo dropout [11],
Variational AEs (VAEs) [12] and Ensemble Deep Learning
(EDL) [13], have been proposed in the literature [14]. UQ
techniques often yield distinct uncertainty distributions due
to their differing modelling assumptions (explained by, for
example, the no free lunch theorem [15]). Our study focuses on
EDL as it offers straightforward interpretability and valuable
practical insights. EDL entails the training of several DL
models with each model making predictions independently
before these predictions are aggregated to form a final de-
cision. Here, AEs are DL models considered for composing
our EDL, i.e., EDL are used for both OoD detection and
UQ (while EDL has the potential to enhance classification
accuracy, its primary function in this paper is UQ). Variations
in AEs’ decisions are considered as uncertainties. We utilize
standard deviation [16] and entropy [17] as our choice of



metrics for assessing uncertainty. These metrics are widely
accepted in the UQ literature. Standard deviation is used when
one needs to measure the dispersion of predicted continuous
values and entropy is used when one needs to quantify the
randomness of a probability distribution. It is important to
note that the choice between standard deviation and entropy
should be guided by the specific characteristics and context
of the underlying application, whose consideration is out of
scope here. Also, there exist two main types of uncertainties:
aleatoric and epistemic [18]. Our study addresses epistemic
uncertainty only, which arises from different AEs’ parameters
initialization as required by EDL.

An AE model that is uncertain about a classification deci-
sion is more likely to mislabel a sample. It should be noted
that classification and UQ are distinct tasks here. During
prediction, each AE-based model, independently trained, pro-
duces a reconstruction error (an AE operates by attempting to
reconstruct an input  in minimizing the reconstruction error
as much as possible). Then a class is determined by comparing
the reconstruction error to a classification threshold, to indicate
whether the underlying data point is anomalous or not (0 for
normality and 1 for abnormality). The combined classification
decisions from all individual predicted classes, using majority
vote [19], are considered to classify the underlying data point,
and individual reconstruction errors are considered to calculate
the uncertainty associated with the classification decision.

To illustrate EDL for UQ using the two uncertainty metrics,
let’s consider the scenario where 5 reconstruction errors (refer
to (1)) are generated from 5 AEs on a data point x with eg;k
the kth element of vector e,:

1
1.2
041, (1)
1.3
0.7

Cr =

with the classification threshold set, for example, to 0.8 for all
the 5 models (but each model could have its own threshold).
The majority of members (3 out of 5) exhibit reconstruction
errors surpassing the threshold, implying the anomalous nature
of the underlying data point. So, the final class of z is y, = 1.
We need a probability distribution, p,, representing recon-
struction errors to quantify standard deviation and entropy. Let
p;k) denote the kth element of p,.. The probability distribution
associated with e, (by dividing each reconstruction error by
the sum of all values) is
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Epistemic uncertainty from these 5 reconstruction errors using

standard deviation and entropy are given by
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Depending on pre-defined uncertainty thresholds for stan-
dard deviation (74g) and entropy (7en), the predicted class
(y = 1) assigned to x could be rejected if its associated
uncertainty (0.331 for standard deviation or 1.538 for entropy
in this case) is found to exceed their respective uncertainty
threshold (setting an uncertainty threshold may necessitate
domain knowledge and experimental investigation to ensure
that decisions regarding misclassified instances are rejected).
For example if 7y = 0.2 then the classification decision will
be rejected. So, only accepted classification decisions will be
treated or prioritized for downstream tasks. It is important to
note that a classification decision is rejected not necessarily
because it is incorrect (as it could be the correct decision) but
rather because it is deemed doubtful.

EDL, which offers the potential to create independent
models, is recommended as it can capture various low-loss
regions, each potentially corresponding to desired outcomes.
The diversity provided by independent models is crucial for
ensuring robust UQ. EDL stands out for its capability to
enhance performance by orchestrating diverse models into
a cohesive framework. However, implementing EDL can be
computationally expensive since it can comprise as many as
a hundred DL models [20]. As a result, it necessitates the
maintenance of multiple DL models to ensure they remain
effective over time. Maintenance entails retraining models in
response to substantial changes occurring within the data set.
This is essential because an ensemble UQ approach relies
on the collective input from all its members. The primary
objective of this study is to explore a more efficient approach
to quantifying uncertainties generated by EDL.

Contributions. We introduce a novel method for efficiently
estimating epistemic uncertainty in an ensemble of AEs within
the EDL framework. Traditional methods rely on maintaining
and evaluating multiple members of an ensemble to estimate
uncertainty, which can be computationally expensive and
resource-intensive. Our approach diverges from this conven-
tional methodology in several significant ways:

« Novel strategy for uncertainty estimation. We intro-
duce a groundbreaking strategy where the uncertainty
distribution learned from an ensemble during the initial
training phase is used as a ground truth reference. This
approach eliminates the need to retain multiple ensemble



members for subsequent uncertainty estimations, thus
simplifying the process.

« Efficient mapping through regression. We develop a
regression model that maps the latent space of a single
ensemble member to the uncertainty distribution of the
ensemble. This innovation allows us to use only one
member of the ensemble and the regression model during
later training and inference phases, substantially reducing
computational overhead.

« Resource efficiency and practicality. Our method drasti-
cally reduces the computational resources required, mak-
ing it particularly beneficial for systems with limited
resources or scenarios demanding quick decision-making.
This resource efficiency is achieved without compromis-
ing the quality of the uncertainty estimates.

« Empirical validation. We validate our approach through
experiments on five OoD detection datasets. Our results
demonstrate that the uncertainty estimates obtained with
our method closely match the distribution learned by the
full ensemble, while significantly lowering computational
costs. This empirical evidence underscores the effective-
ness and practicality of our approach.

Our inspiration for this approach stems from the work
presented in [21] (called DUAD), which addresses data con-
tamination issues in the context of anomaly detection where
authors employ latent representations of the original data in
conjunction with reconstruction errors to effectively mitigate
contamination concerns. The key difference between our work
and DUAD is that we quantify uncertainty associated with a
classification decision which can be obtained from DUAD.

The remainder of the paper is organized as follows: Section
II provides background on UQ and related work to our pro-
posal. Our proposed method is discussed in Section III. Section
IV presents and discusses the results. Finally, in Section V, we
conclude and suggest areas for further research.

II. BACKGROUND AND RELATED WORK
A. Background

Uncertainty. In the realm of DL models, we encounter two
types of uncertainties: aleatoric and epistemic [18]. Aleatoric
uncertainty is a consequence of the inherent randomness in
the data. Capturing this uncertainty involves understanding the
conditional distribution of a target given specific input values,
essentially representing model uncertainty. On the other hand,
epistemic uncertainty arises from a lack of knowledge about
the true parameters of the model. To capture this form of
uncertainty, we delve into learning about the regions of the
input space that remain unexplored by the data, signifying data
uncertainty [22]. Our study addresses epistemic uncertainty
only, which arises from different models’ parameters initial-
ization, used in the context of OoD systems. It is important
to note that UQ techniques often yield distinct uncertainty
profiles due to their differing modelling assumptions.

Out-of-distribution (OoD) detection involves the identifi-
cation of data points that deviate from expected behaviour. A
wide range of OoD detection methods has been proposed in
the literature, spanning classical approaches to DL techniques.

Within the realm of DL, various strategies have emerged to
tackle this challenge. These strategies encompass supervised
methods, although their adoption is limited due to the need for
labelled data—given that most OoD data sets lack labels. More
commonly, the approaches involve unsupervised techniques,
such as AEs [23], or self-supervised methods, exemplified by
natural language processing applications like DeepLog [24],
[25]. Furthermore, the field of OoD detection addresses several
pertinent issues, including the challenge of data contamination.
These issues shape the ongoing trends within the domain of
OoD systems. This study treats AEs for OoD detection.

Auto-encoder (AE): Let X denote an OoD detection data
set given by

X=X UuUXxt={z}¥,, 3)

where X~ and X are the sets of in-distribution and OoD
data points respectively. Every x; in the training data set has its
label y; € {0,1} (y; =0 for z; € X~ and y; = 1 otherwise).
A classical AE architecture is illustrated in Figure 1. An AE
comprises two neural networks: an encoder, denoted as fy, and
a decoder, denoted as g4. The entire AE model is represented
as hg. The encoder’s primary role is to learn a latent space
representation from the input data. Once this latent space is
learned, the decoder aims to reconstruct the input instance x;
using its corresponding latent representation z; [26]. The three
functions are defined as follows,

fo: X =7
9o : 4 — X~ 4)
hg : X~ — X7,

where Z denotes a latent space.
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Figure 1: Classical AE architecture

Our setting is as follows. An AE model is trained with nor-
mal data points X ~ only. So, the model attempts to minimize
a loss function (which represents the sum of reconstruction
error e; on each data point x; versus its reconstructed copy
Z;) that, using an f5-norm (other metrics could be used), is

€; = sz - sz . )

The objective function of the entire network hg is given by
. ‘ 6
min Y e, (6)

where © = (6,¢) denote model’s parameter. From what
precedes, it is evident that z; = fp(x;) and Z; = gy (2;).

Let A = A~UAT be the set of reconstruction errors where
A~ ={e;:z; € X }and AT ={e;:m; € XT}.

It is important to note that in the context of ensemble UQ
approach, some notational changes are required to account for
each model in the ensemble. Specifically, we consider a total



of K models in the ensemble, which introduces variations in
our previous notations. The notations fy will be replaced by
fék) to indicate the encoder of the kth AE model, g4 by gék),

(k)

i .

he by h), 2 by 2, &, by 2, ¢; by e!*) and ; by ¢
Equation (4) emphasizes that an AE should be trained
exclusively on normal data points to effectively identify OoD
instances that deviate from the learned normal patterns. This
approach holds merit for two main reasons. Firstly, character-
izing the distributions of abnormal data points can be inher-
ently challenging due to their diverse and often unpredictable
nature. Secondly, OoD data sets are typically unlabelled, mak-
ing it difficult to employ supervised classification methods.

AEs excel in OoD detection tasks [21], especially when
labelled samples are limited. They learn to detect anomalies
solely from the normal data distribution, eliminating the need
for labelled examples. EDL techniques bolster detection ac-
curacy by combining multiple AE models, each trained on
distinct parameter aspects. This collective approach compre-
hensively captures normal data patterns and effectively identi-
fies deviations indicative of OoD samples. In critical domains
like cybersecurity, where OoD detection is paramount, not just
classification decision but also the uncertainty behind model
classification decision is crucial. Knowing the level of uncer-
tainty in security alerts enables a prioritization mechanism.

Ensemble deep learning (EDL), as elucidated in [27],
revolves around a systematic amalgamation of multiple models
to predict the class of a data point. Ensemble learning is a
broad concept used in the machine learning community, it is
considered EDL when individual models are all DL models.
EDL harnesses the collective power of several individual
models to enhance generalization performance. Given that
each DL model can possess millions of parameters and an
ensemble can encompass up to hundreds of independent mod-
els, they can potentially approximate the unknown function in
numerous ways. It is assumed that there exist multiple low-
loss regions where several models can yield desired outcomes
while employing different underlying functions. EDL strategi-
cally explores these diverse low-loss regions, culminating in a
distribution of functions with varying characteristics [28].

Model training in ensemble learning can be conducted
either collaboratively or independently [27]. In a collabora-
tive approach (e.g. boosting [29]), individual models oper-
ate in concert, exchanging information to enhance overall
performance. Conversely, in independent ensemble learning,
individual models are trained separately (e.g. bagging [30])
and the final classification decision relies on fusion strategies
as its cornerstone. Fusion strategies encompass techniques
such as the sum rule, majority rule, and the Borda count
[31]. In both cases, individual models may be homogeneous
(utilizing the same model) or heterogeneous otherwise. In-
dependent ensemble learning inherently introduces variability
by combining predictions from multiple models trained with
different subsets of data or with different parameter initial-
ization. Other techniques (e.g. Bayesian neural networks [22]
and Variational AEs [12]) treat model parameters/architecture
as random variables and place prior distributions over them,
and learn their posterior distribution. We consider independent

EDL using homogeneous models (all our individual models
are AE) trained on the same data but different parameter
initialization. However, its notable drawback lies in the ne-
cessity to maintain all individual models to adapt to changes
for effective utilization, a primary concern in this paper. To
address this concern, we treat EDL as a regression task.

Regression learning serves as a fundamental method for
comprehending the intricate relationship between features and
a target. Once the relationship between features and target
has been estimated, regression models enable us to predict
outcomes. DL regression models find wide application in
predictive analytics, ranging from forecasting trends to pre-
dicting outcomes in various domains [32]. For instance, Pang
et al. proposed a DL regression model for anomaly detection
in video data [33]. Other applications encompass forecast-
ing, capital asset pricing, and competitive business analysis.
While the literature presents a multitude of deep regression
models, each exhibiting distinct performance characteristics
under varying circumstances, our paper does not focus on con-
structing or extensively studying advanced regression models.
Instead, our primary objective is to employ a straightforward
regression model to address our research question. In this
regard, we utilize multilayer perceptron (MLP) [34], although
alternative regression algorithms (e.g. random forest) could be
explored [35]. We use MLP as a typical regression model for
the following reasons [36]:

« it is a powerful DL model capable of capturing complex
nonlinear relationships in data. It excels at modeling
intricate patterns and extracting high-level features from
unstructured data.

o it is highly flexible and adaptable to different types of
data and problem domains. It can handle large-scale data
sets with high dimensionality and is robust to various data
distributions and structures.

o it learns hierarchical representations of data through
layers of neurons, enabling it to automatically extract
features and learn abstract representations from raw data.

B. Related work

Our proposed method builds on EDL [27] for UQ. With
EDL, every member is retrained whenever there are substantial
changes in the data set. Also, each member participates in the
decision-making process. However, the retraining of all mem-
bers and their involvement in decision can be time-consuming.
Unlike EDL which maintains multiple AE members, our
approach leverages the uncertainty distribution derived from
the ensemble during the initial training phase as a ground truth
reference. We then develop a regression model that maps the
latent space of a selected ensemble member to the ensemble’s
uncertainty distribution for subsequent trainings and infer-
ences. This method uses only one member of the ensemble and
the regression model in later trainings, regardless of the initial
ensemble size. During future trainings, model parameters are
initiliazed by their previous optimal values. This concept is
related to knowledge distillation where a smaller model (the
“student®) is trained to mimic the behavior of a larger model
(the “teacher) for complexity efficiency [37].



Our streamlined approach is especially beneficial for sys-
tems with limited computational resources or in situations
requiring rapid decision-making. Our experiments show that
the uncertainty estimates produced by our method are compa-
rable to those learned by the full ensemble, while significantly
reducing the computational resources required. To apply our
method, we assume that changes in the original input data do
not significantly affect the uncertainty distribution. We employ
data augmentation to anticipate future changes [38].

III. ENSEMBLE UNCERTAINTY INFERENCE

Our solution involves the creation of a regression model
to estimate the ensemble uncertainty distribution. This ap-
proach infers epistemic uncertainties using only one ensemble
member and the regression model, reducing the computa-
tional resources required significantly. There are three distinct
phases involved: groundwork, regression and retraining. In
the groundwork phase, we initially train an ensemble of
AEs where an uncertainty distribution is generated. In the
regression phase, we construct a regression model capable
of mapping a latent representation of the original data to the
uncertainty distribution obtained during the groundwork phase.
This regression model serves as the sole tool for future UQ
tasks. The retraining phase is initiated in response to substan-
tial changes within the data set, necessitating the retraining of
both the chosen ensemble member and the regression model.

A. Groundwork regime

The uncertainty distribution is learned from a dedicated
validation data set (we apply data augmentation to expand the
distribution of data within the input space [38], a technique
that anticipates future changes during current training and
promotes effective knowledge distillation from ensemble to
regression), denoted as X,. Given an ensemble of K trained
AEs, each AE model h(@]C ) produces a reconstruction error
egk) (an AE operates by attempting to reconstruct an input x
in minimizing the reconstruction error as much as possible).
Then a classification decision is determined by comparing the
reconstruction error to a classification threshold, to indicate
whether the underlying data point x; € X, is anomalous or
not (0 for normality and 1 for abnormality). The ensemble
classification decision and the uncertainty associated with it
are obtained from combining individual classification deci-
sions and individual reconstruction errors respectively.

In the classification process using the kth model h(k), a
classification threshold 77(*) is established during the training
phase. Ideally, this classification threshold should be deter-
mined as in (7). A new data point x; is flagged as OoD if
el(»k) > n(k) (with egk) as defined in (5)). Otherwise, it is
normal (see Figure 2). A theoretical threshold is

n(k) = max {6§k) :Va,; € Xf} . @)

The final classification decision is obtained by combining
individual classification decisions using majority vote [19].

In practical applications, the approach outlined in Equation
(7) may not always yield optimal results. In reality, a validation
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Figure 2: Expected behavior using AEs: (2a) training, (2b)
inference. Normal instances are in green and abnormal in red.

data set is often employed to determine an optimal threshold
using search strategies. AEs can be sensitive to the choice of
this threshold, as certain strategies for fixing 7(*) may perform
well on specific data sets but not on others. In fact, other
research works have explored dynamic methods for choosing
n™) [39] or have adopted Bayesian approaches to learn the
distribution of 1(*) [40].

The epistemic uncertainty, denoted o;, measured using the
standard deviation, is computed as follows:

XK: (k)( (k) 7)2 here & — 2 i ®) (g
g; = p; €, — € , where e; = — €
k=1 K k=1

or using entropy [16], is given by,

K (k)
o= =3 M logy p® | where pP) = S (9)
k=1

_K—éi.

B. Regression regime

Once the initial training is achieved, we can formulate
the original UQ as a regression problem. To treat UQ as a
regression problem, we start with the assumption that an AE’s
latent representation Z can effectively describe the uncertainty
distribution obtained from the ensemble. The latent representa-
tion fed into the regression model inherently possesses features
that are significant for explaining the ensemble uncertainty.
There are two steps: construction of the regression model and
selection of a member to generate the latent representation.

1) Construction of the regression model: Now, consider
a candidate member of the ensemble, hg). Let Z; =
(P @)z € X} and E; = {e]z; € X,} denote the
latent representation and reconstruction errors of elements
of X, using hg) respectively, and ¥ = {o;|z; € X,} be
the uncertainty distribution that the ensemble method has
produced. The goal is to design a regression model, ¢, to
learn X (X is the ground truth here). Inspired by [21], our final
feature space for regression is L;, which is a conjunction of
the latent representation Z; and the reconstruction errors F;
of the jth AE model. Putting reconstruction errors F; and
latent representation Z; together reinforces informativeness
of exogenous features that constitute our latent data set. Our
regression function is then defined as

O:L; - 2. (10)



The idea of regression is to minimize the following function

S o -6, (11)
o,ED
where inferred uncertainty &Z(j ) = @(lgj )) for lZ(j ) e L;.
The following set of important properties is extracted and
derived from the expected regression function, shedding light
on various aspects and characteristics of the underlying data

modelling process:
o For every z;,z € X, Ellgj), l](g) € L; such that

i — x| o< 19 =19 (12)

e For every x; € X, its corresponding feature lgj ) ¢ L;
and for some € > 0,

1219 — o] < €. (13)

Here, the proposed method is essentially applied to estimate
uncertainties of a one-parameter distribution. If the aim is to
predict at least two targets simultaneously in a regression task,
existing DL regression models can achieve it. This is known as
multi-target regression [41]. For example, one can make the
output of multi-layer network to have several neurons, each
representing one of the targets to predict.

2) Ensemble member selection: As our goal is to streamline
the computational resources needed to train and maintain EDL
for UQ, ultimately, only one ensemble member will be chosen.
We assume there is an ensemble member, namely an AE,
that provides a good approximation of the feature data set
L. There are three selection criteria: the selected member
should (1) minimize the standard error between the ensemble’s
uncertainties and the estimates, (2) maximize the F;-score
of classification decisions, and (3) maximize the agreement
between acceptances/rejections of classification decisions from
the ensemble. We use an agreement metric (AGR) to measure
the proportion of alignment between decisions obtained from
the ensemble uncertainties and those from the regression
model. Let 7 denote an uncertainty threshold, and recall that
o; (o; € X) is the ensemble uncertainty and y; the ensemble
classification decision of an input z;. A classification decision
y; is accepted only if o; < 7; otherwise, it is rejected.
The agreement level between the ensemble and the regression
model is calculated as follows:

#(TY UTY)

AGR;, = et
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Let TP, FP; and FNj denote the rates of true positives,
false positives and false negatives of the kth model respec-
tively. The positive class here is the OoD class which is the
class of interest. Fy-score of an ensemble member is given by

PREC;, x RECy

—_— 15
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Fy-score, = 2 x

1: function EDL(K, X, X,)

2: for k € {1,2,..., K} do

3: hg ) AE(X ™, parameters)
4: n(k) — Validation(hg),Xv)

5: end for

6: S0

7: for z; € X, do

8: for k € {1,2,...,K} do

9. e | () — 4|

10 end for

11: 0; <—uncertainty (egl), 652)7 .. ,el(-K))
12: X.append(c;)

13: end for

14: return X

15: end function

16: function regression(k, X, )

17 (Zi By  (0,0)

18: for z; € X, do

19: sz) — f@ék) ()
20: Zk.append(zi(k))
21 0 hg“)(xi)
22: egk) — chgk) — 2]

23: Ek.append(egk))

24: end for
25: Ly, + conjunction(Zy, Ey)
26: return MLP(L;, ¥, parameters)
27: end function
28: procedure main(j, K, 7, X, X, X};)
29: Y+ EDL(K,X,X,)

30: O «regression(j, X, X)

31: for z; € X; do

32: zl@ — fa(J)(ICi)

33 &)+ ||hg (i) — i |
34: 99« classification-decision (e’ n@)
35: lgj) — (:onjun(:tion(zi(j)7 ez(-j))
36: if (1)) > 7 then

37: reject QZ(J)

38: end if

39: end for

40: end procedure

Figure 3: Regression UQ method where ;7 denotes the id of the
selected member, K the ensemble size, 7 the threshold, X —,
X, and X, training, validation and test data sets respectively.

where

TPy
TP;, + FP;,

TPy,

PREC;, = R
k TP, + EN,

and REC; =

The member of the ensemble, hg), to be selected should
satisfy the following criteria:

AGR; = max {AGR;, , Vk} , (16)

Fi-score; = max {F;-scorey, , Vk} , (17)
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From a multi-objective optimization perspective, when these
three criteria conflict, it is important to note that criterion (16)
takes precedence over (17) which in turn takes precedence over
(18). Criterion (16) presents an effective method for measuring
inferred uncertainties, as utilized in this work, which involves
accepting or rejecting classification decisions. In other words,
the regression model should maintain the acceptance/rejection
of classification decisions made by the ensemble.

C. Retraining phase

Recall that X, denotes the original validation data set, L
the latent representation of X, produced by the selected en-
semble member and Y the uncertainty distribution. Whenever
substantial changes XA occur within the input data set, the
retraining phase involves the following:

1) Generate a latent representation L of the new data XA
using the already trained chosen ensemble member.

2) Predict the uncertainty > A associated with LA using the
already trained regression model.

3) Retrain the ensemble member on X = X, UXAa. This
process generates Liey.

4) Retrain the regression model @ : Loy — X U XA.

During the retraining phase, we use the previously determined
optimal parameter values for initializing the parameters. A
pseudo-code of our approach is given in Figure 3.

Data set Training Test Validation | Attributes after treatment | Anomaly rate
KDD 632307 3412899 853224 122 80%
NSL 50085 78745 19686 122 48%

IDS 73438 70000 292542 78 36%

KITSUNE 200341 100000 302592 114 45%

CICIOT 90000 102000 408000 46 50%

Table I: The characteristics of data sets to train UQ methods.

IV. EXPERIMENTAL INVESTIGATION
A. Experimental setup

To evaluate the significance of our method, we will employ
the following correlation metrics between the ensemble uncer-
tainty distribution and the inferred uncertainty distribution:

e Pearson’s Correlation Coefficient (PCC): measures the
linear correlation between the predicted and ground truth
uncertainty distributions. A PCC value closer to 1 implies
a strong positive linear relationship, signifying a robust
model. Its threshold is set to 0.75.

o Spearman’s Correlation Coefficient (SCC): assesses the
monotonic relationship between the predicted and ground
truth distributions. Its interpretation is similar to PCC.

We will use Mean Squared Error (MSE) to quantify the
differences between the predicted and ground truth uncertainty
distributions. A lower MSE indicates a closer match between
the predicted and ensemble uncertainty distributions. We will
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Figure 4: Unidimensional latent representations, obtained
through PCA, were generated for the 15 AE models. In this
representation, each row corresponds to an AE model.

also use agreement score (AGR as defined in (14)) to measure
the proportion of alignment between the decisions obtained
from the regression model and the decisions obtained using
the ensemble uncertainties. We will also use Fj-score to
measure the performance of the selected ensemble member.
Additionally, we will use scatter, line and box plots to visu-
alize the correlation between the ensemble’s and the inferred
uncertainty distributions. In constructing the ensemble for UQ,
we will consider ensemble sizes of up to 15, though other sizes
can be explored based on available computational resources.
For the regression task, we expect that a simple regression
model would be appropriate for this scenario (we use MLP).
The latent representation which inputs the regression model
has already in principle interesting features in explaining the
target. Although we tried different regression models in our
experiments, we only report results from MLP as it is found
to be a typical DL regression model and all regression models
used gave similar results. Hyperparameters, including the prior
weight decay, batch size, and learning rate will be set within
specified ranges to ensure comprehensive evaluation. These
parameter values will be randomly selected to avoid bias.
The weight decay will fall within the range [10~7,107°],
batch sizes of 16,32, or 64 will be considered and learning
rates will be selected from [1071%,107%] for all AE models.
These parameter settings will allow us to conduct a rigorous
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Figure 5: Normal and attack traffic from the 5 data sets in a two-dimensional space displaying normal and attack data from:
(5a) KDD, (5b) NSL, (5¢) IDS, (5d) KITSUNE and (5¢) CICIOT data sets with all types of attacks combined into one class.

assessment of the method’s performance.

For our experiments, while our solution is applicable to a
wide range of scenarios, we focus on the following anomaly
detection data sets. We consider cybersecurity data sets where
the need for UQ is paramount as cybersecurity analysts are
often overwhelmed by a large number of security alerts with
often minimum resources [42]. This efficient UQ approach
will help prioritize security alerts. We use these data sets to
validate and demonstrate the effectiveness of our approach.
The characteristics of these data sets are summarized in Table
I, and their distributions are visualized in Figure 5:

o« KDD is an intrusion detection data set [43]. It contains
simulated military traffics and several types of attacks.

e« NSL is a revisited version of the KDD data set [43].

« IDS is a simulated data set containing complex network
traffics and several types of attacks [44].

o KITSUNE is a collection of 9 network attack data sets
captured from either an IP-based commercial surveillance
system or an IoT network [45].

o CICIOT is a collection of real-time data containing 33
attacks that are executed in an IoT network [46].

While a couple of data sets may be considered somewhat
dated, they still serve as valuable OoD benchmark data sets.
We anticipate that our approach will demonstrate effective-
ness across a range of different data sets. We partition each
data set into four fractions: the training set, the validation
set, the test set, and an additional set containing substantial
changes to evaluate our model. The code is available at
https://github.com/jmf-mas/many_to_one_uncertainty.

B. Results and discussion

1) Latent representation and uncertainty distributions:
Only one member of the ensemble will eventually be se-
lected to estimate the ensemble uncertainty distribution. This
approach explores the potential variability in regression results
across different ensemble members, as each member may
have its own unique latent space representation. To ensure a
fair and comprehensive investigation, we conduct regression
for every member and report the top 1 best result obtained.
Interestingly, our analysis reveals that the latent representations
of the original data produced by the AE models do not
exhibit significant differences, as depicted in Figure 4. This
finding suggests that any member of the ensemble could be
selected for inferring the ensemble uncertainty distributions
without substantial differences in latent representations. The

uncertainty distributions using standard deviation and entropy
are summarized in Figure 6, which indicates that both uncer-
tainty metrics produce different uncertainty distributions. This
suggests that we may expect different results from them.

2) Execution time or computational resource usage: Figure
7 illustrates the advantages of employing our proposed model
in terms of model execution time (or inherently computational
resource usage). Our solution exhibits minimal and nearly
constant resource utilization, whereas the original EDL’s usage
escalates proportionally with the ensemble size.

0.0008

0.0000

Figure 7: Training time between ensemble and inferred UQ.

To theoretically illustrate the tangible benefits of our ap-
proach in terms of reducing computational costs, consider a
scenario where initially, there were n AE models running on
a computer with ¢ processing cores, each requiring h hours in
average for training or evaluation (resulting in a total of ”—Ch
training hours). With our proposed regression-based approach,
we can potentially save up to @ hours in future training or
evaluation processes. Particularly in cases with a large number
of models (high n) and lengthy training times (significant
h), the time-saving potential using our method becomes quite
substantial, making it a valuable resource-efficient alternative.

3) Correlation coefficient and regression errors: Figure 8
clearly illustrates a robust correlation between the ensemble
distribution and estimates, particularly when standard devia-
tion is used as the metric. This strong correlation suggests
that it is feasible to use a single member of the ensemble to
estimate an uncertainty value that closely aligns with what
the entire ensemble would calculate. Additional supporting
metrics such as MSE, PCC, and SCC displayed in Figure 9
and summarized in Table II further substantiate our findings.

However, it is important to note that Figure 9 and Table
II also reveal weaker correlations when entropy is employed
as the uncertainty metric. In such cases, the correlations
between the ensemble and inferred uncertainty distributions
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Figure 6: An example of distributions of uncertainties using standard deviation (std) and Shannon entropy.
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Figure 8: Top-1 regression results using: (8a) standard deviation and (8b) entropy.

standard deviation entropy
Data sets | MSE (x1078) | PCC | SCC | MSE(x10%) | PCC | SCC
KDD 8.09 0.99 | 0.96 0.99 0.71 | 0.69
NSL 10.2 0.95 | 0.93 7.5 0.76 | 0.78
IDS 48.8 0.98 | 0.95 4.90 0.88 | 0.77
KITSUNE 3.51 0.99 | 0.95 5.19 0.96 | 0.91
CICIOT 2.01 0.97 | 0.93 0.48 0.81 | 0.84

Table II: Top-1 MSE and correlation coefficients (PCC and
SCC) between ensemble and inferred uncertainty distributions.

are generally weaker. This suggests that determining ensemble
uncertainty from a single member when using entropy as
the metric might not be advisable. In essence, while Table
II demonstrates strong correlations for standard deviation,
it is reasonable to argue that the two uncertainty metrics,
standard deviation and entropy, convey distinct interpretations
of uncertainty. Figure 6 illustrates that both uncertainty metrics
exhibit distinct shapes and scales.

These results suggest that with substantial efforts during the
modelling phase of the regression task, it is possible to develop
an advanced regression model whose inferred values closely
align with the ensemble predictions of uncertainty distribution
when entropy is used as metric. Notably, the regression results
achieved on the CICIOT data set demonstrate exceptional
performance, as depicted in Figure 8. This underscores the
potential effectiveness of this approach in certain scenarios.

However, it is essential to recognize that, in some situations,
inferring an ensemble uncertainty distribution from a single
member’s profile may not yield satisfactory results. Therefore,
the suitability of this approach should be considered on a case-
by-case basis, taking into account the specific characteristics
of the data and the modelling context.

4) Quality on reproducing decisions from the ensemble UQ:
It is important that our solution outputs the same decision
as that of the original EDL. Table III indicates that the
top-1 selected member and EDL achieve almost the same
Fi-score. This is a valuable criterion. Another criterion is
that classification decisions that were flagged as doubtful (or
trusted) by the original UQ should also be flagged so using
estimates. For each uncertainty metric, we set 100 different
uncertainty thresholds, 7. The uncertainty thresholds are set
at the ¢th quantile of the uncertainty distribution, where
g € [0.1,0.5]. A classification result y;, which possesses an
associated uncertainty o; greater than a designated threshold
T, is marked as doubtful and subsequently rejected. Figure 10
illustrates the degree of correspondence between the original
uncertainty distributions and the estimations. Agreement score
is the most important criterion for validating our model.

The alignment in identifying uncertain classification deci-
sions, through the assessment of inferred uncertainties, can
vary based on the selected uncertainty threshold. Specifically,
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KDD
0.92
0.91

NSL
0.93
0.92

IDS
0.64
0.65

Approaches
EDL
Ours

KITSUNE
0.72
0.67

CICIOT
0.62
0.64

Table III: F;-scores of EDL and top-1 selected member.

when utilizing standard deviation as a measure, the acceptance
or rejection of classification decisions grounded on these
estimates demonstrates high agreement across data sets for
the whole range of uncertainty thresholds (except for a couple
of ensemble members). Though results from previous metrics
(MSE, PCC and SCC) were favourable to this regression
approach in most cases, Figure 10 indicates that the use
of this proposed model should be considered on a case-by-
case basis, especially depending on the uncertainty threshold
pre-fixed and the ensemble member to be selected. Similar
but weaker results are also shown when entropy is used as
uncertainty metric. This suggests that both uncertainty metrics
convey different information (also as were shown in Figure 0).
It is noteworthy that different ensemble members may yield
diverse results when entropy is used as uncertainty metric.

This underscores the importance of caution when choosing a
member from the ensemble to model the regression task.

Figure 11 shows that (using the best ensemble member),
on average across datasets, 69% of rejected classification
decisions when using standard deviation were associated with
misclassified data points. This highlights the importance of
factoring in uncertainty to improve downstream processes,
such as enhancing the prioritization of security alerts. How-
ever, when entropy is used, the average rejection rate for
misclassified data points decreases to 60%.

V. CONCLUSION

We have introduced a novel method for estimating epistemic
uncertainty in the context of out-of-distribution detection,
wherein the uncertainty quantification model is trained using
an ensemble. We treated uncertainty quantification as a regres-
sion problem. In applications where ensemble deep learning
is employed for uncertainty quantification, maintaining all
members of the ensemble is typically required to keep the
solution up to date. However, this can become computationally
expensive, especially when the ensemble comprises several
members. Our objective was to develop an approach that
allows us to estimate ensemble predictions from one ensemble
member and the regression model, thus reducing the compu-
tational burden to maintain only two models. This streamlined
approach is particularly advantageous for systems with limited
computational resources. The assumption is that there is a
strong correlation between the latent representation of the
original data and the uncertainty distributions obtained by the



ensemble, which can be estimated using a regression model.
Otherwise, this might limit the applicability of our proposed
model. To evaluate this, we employed two uncertainty metrics:
standard deviation and entropy.

Through our experimental investigations, we have observed
that this proposed approach exhibits a favourable performance
to standard deviation. There is a notably strong correlation
between the standard deviation uncertainty distributions pre-
dicted by the ensemble and the estimates of those uncertainties
obtained from a regression model in most cases. In contrast,
correlations between the ensemble uncertainty profiles and
estimations were weaker when entropy was used as the metric.
This suggests that consideration of our approach should be
taken case by case, as there could be situations where it does
not hold up. It also suggests that both uncertainty metrics
produce different uncertainty distributions.

A couple of promising directions for future research emerge
from our work. Initially, our experiments focused on quantify-
ing uncertainty through an ensemble of auto-encoders for out-
of-distribution detection systems. Extending this investigation
to include diverse types of neural networks applied to other
classification tasks represents a valuable next step. Moreover,
our current approach primarily aimed at replicating the un-
certainty distribution of the ensemble with a single member,
without delving into the preservation of other critical perfor-
mance metrics such as accuracy or the Fi-score. Exploring
more advanced methodologies that ensure the retention of
these performance levels while managing uncertainty would
be a fascinating area for further investigation.
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