Model-Based Testing of Non-Deterministic
Systems

Alexander Onofrei, Marc Frappier, and Emilie Bernard

University of Sherbrooke, Sherbrooke, Canada
{onoa2801,marc.frappier,emilie.bernard4}@usherbrooke.ca

Abstract. Testing non-deterministic systems is challenging due to un-
predictable behaviours arising from timing, concurrency, and random in-
puts. This paper explores the application of model-based testing (MBT)
to tackle these challenges, leveraging formal methods and tools to en-
sure systematic test coverage. We employ ProB, a model checker for the
B method, to analyse a formal model of the system under test (SUT)
and generate test scenarios from the formal B model. As a proof of con-
cept, we apply MBT to the TLS 1.3 protocol, a widely used complex
cryptographic standard, and test one of its implementation using the
BouncyCastle OpenSSL Java API. While the TLS handshake is primar-
ily deterministic, it includes non-deterministic components like cipher
selection and random value generation, making it an excellent candidate
for evaluating MBT’s effectiveness. We present the design and logic of
our proof of concept, showcasing its flexibility to support various mod-
els and SUTs. This study demonstrates that combining formal meth-
ods, non-deterministic analysis, and state-based testing can effectively
address the challenges of non-deterministic systems, enabling improved
testing strategies and greater system reliability.

1 Introduction

Models are essential in software development, particularly as system complex-
ity increases. They abstract intricate architectures, employing tools like graphs
and finite state machines (FSMs) to predict behavior [2]. Ideally, a model fully
represents the implementation under test (IUT), yet non-deterministic FSMs
remain constrained [14]. While effective for systematic testing, real-world sys-
tems—especially distributed architectures and protocols like TLS—introduce
external dependencies that complicate verification [10].

This paper presents a proof of concept: testing non-deterministic systems
using B, a model-based specification method |1]. We construct an abstract B
machine to model key behaviors of the system under test and develop a test
generator using ProB [15] to verify the correctness of the SUT. To validate this
approach, we apply it to the TLS 1.3 session protocol |21], a highly complex stan-
dard. Using a simplified model of TLS, we test the BouncyCastle OpenSSL Java
API implementation [24]. The challenge in MBT of non-deterministic systems is
that the test scenario is constructed online during the execution of a test, since
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the next event to generate depends on the output that was non-deterministically
chosen by the SUT. For example, in TLS, the response of the client depends on
the response chosen by the server.

Testing, model checking, and formal proofs each offer distinct advantages and
limitations. Formal proofs provide mathematical certainty but struggle with scal-
ability and practical implementation. Model checking systematically explores all
possible states but is constrained by state-space explosion [§]. Testing, while less
exhaustive, remains the most practical method for verifying real-world imple-
mentations. Model-based testing bridges these approaches by automating test
generation from formal models, reducing human error and increasing coverage
compared to manually derived test cases. This makes MBT particularly valuable
for testing non-deterministic systems.

2 Related Work

Research on testing nondeterministic systems remains limited, with few stud-
ies examining model-based approaches in this context. Key challenges include
test model coverage under uncertainty, scenario generation via model checkers,
and efficient testing strategies. |11] provides foundational insights, highlighting
methods for handling concurrency, randomness, and the selection of test con-
ditions. We tackle these issues using ProB, which offers greater expressiveness
than FSMs, because of their lack of state variables—allowing the extraction of
specific paths that satisfy a given predicate.

In MBT, nondeterministic models arise from abstraction or inherent software
behavior. A single test case may follow multiple paths due to internal system
decisions |12} [13]. Techniques such as probabilistic model checking and tran-
sition annotations mitigate this problem, but ensuring sufficient test coverage
remains a challenge |20, 4]. By deriving tests directly from the model within the
model checker, we ensure comprehensive scenario handling. To improve testing
efficiency, innovative techniques have been proposed. For example, integrating
model checkers with mutation analysis enables the generation of systematic tests
by injecting faults into the system models [5]. We address this by leveraging the
ProB API to generate abstract test cases based on specific test criteria and ana-
lyze logical operations within the model. Other approaches, such as [17], optimize
state graph-based test generation to balance coverage and test set size, critical
for multi-threaded and distributed systems. Providers, such as Entrust [9], of-
fer SSL/TLS tools to help organizations assess and enhance digital security by
evaluating configurations on both client and server sides, including verifying
compliance with encryption algorithms.

Combinatorial testing has been used for TLS |23]|16],and several errors were
found. We hope that a ProB MBT approach will enable us to find interesting
combination of parameters using predicate analysis and logic solving that are
not covered by traditional combinatorial testing, as shown in [22]
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3 Foundations

3.1 B and ProB

B is a formal method for system specification, design and implementation, pro-
viding precise modeling through abstract machines and refinement [1]. It ensures
correctness and reliability, making it essential for safety-critical systems. In this
project, B is used to formally model the SUT. ProB, a model checker and anima-
tor, enables dynamic analysis, model execution, and real-time verification |15].
The ProB Java API [3] is integral to our proof of concept, facilitating interaction
with the B model. It is used to generate targeted test cases for specific traces
while also identifying states that satisfy given predicates.

3.2 TLS Protocol

TLS (Transport Layer Security) is a widely adopted cryptographic protocol de-
signed to ensure secure communication over computer networks. It guarantees
data integrity, confidentiality, and authenticity between a client and a server.
TLS is a cornerstone of secure online interactions, used extensively in web
browsers, email systems, and various online services due to its ability to pre-
vent eavesdropping, tampering, and forgery.

The TLS handshake, which is the first phase of communication between a
client and server, plays a crucial role in establishing a secure session. This process
involves authentication, key exchange, and negotiation of session parameters.
While largely deterministic, the handshake includes non-deterministic choice of
elements such as cipher selection and initial random values. These steps can be
summarized with the sequence diagram provided in Fig. [T} The Client Hello and
Server Hello messages, along with the encrypted extensions, contain the essential
parameters required to establish a basic TLS communication. These parameters
include the supported versions, cipher suites, signature algorithms, supported
groups, and shared keys, among others [21].

These nondeterministic factors necessitate careful testing to confirm the pro-
tocol’s reliability and security. Thus, testing TLS for its non-deterministic com-
ponents is essential to ensure it can correctly handle unexpected behaviors.

4 Methodology and Design

Our MBT approach for non-deterministic systems relies on black-box testing.
This means we evaluate whether a system adheres to a predefined model based
on its specification and rules, without considering its internal implementation.
To achieve this, we integrate our Java implementation with the ProB model
checker via the ProB Java API. This integration allows us to control, execute,
and retrieve information from the model checker directly within our application,
streamlining test selection and execution. The SUT in our study is the Bouncy-
Castle OpenSSL Java Library, which will be evaluated based on model-derived
tests.
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Fig. 1. TLS 1.3 Sequence Diagram

This methodology enables testing of both the client and server sides of a
TLS implementation. When testing the server, ProB generates a client message,
which is sent to the server. The server’s response is then compared against the
expected output defined by the specification. A match indicates a successful
test, while any deviation results in a failed test. To test the client, the process
is reversed, with the server-side behavior being modeled and validated against
expected responses.

The sequence diagram provided in Fig. 2] illustrates the interactions between
our application components during server-side testing. Notably, the same dia-
gram applies to client-side testing, with the only modification being the entity
that initiates the first message. This implementation is designed for flexibility,
facilitating adaptation to any SUT. To achieve this, we structured each com-
ponent in a generalized framework, enabling adaptation based on the specific
requirements of the SUT. Since our specification abstracts from implementation
details, we developed a test instantiator to convert abstract tests—generated by
the test scenario generator—into concrete, executable tests. The scenario gener-
ator performs operations such as state predicate satisfaction and random trace
generation. Each test consists of a sequence of events and corresponding oper-
ations with assigned parameters. An Information Capture module collects the
SUT’s outputs, feeding them back to the Test Instantiator, which converts them
into abstract results for comparison against the specification’s expected results.
If the result is one of them, the test is passed and the next operation is executed.
Otherwise, the test case is marked as a failure.

As a proof of concept, we test the implementation of the ClientHello and
ServerHello messages in TLS 1.3. Each message is represented by a send oper-
ation for the issuer of the message, and a receive operation for the recipient,
which will enable us to model man-in-the-middle attacks. The model initially
generates the ClientHello message, using the SendClientHello operation, in an
abstract format, which is then translated into a concrete TLS ClientHello mes-
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Fig. 2. Architecture of our MBT testing approach

sage. The ServerHello response from the SUT is converted back into an abstract
representation and compared against the expected abstract message generated
by the model.

For our proof of concept, we selected a typical sequence of operations within
the model: SendClientHello, ReceiveClientHello, SendServerHello, ReceiveServer-
Hello. The Send operations include parameters corresponding to those in a con-
crete TLS message, as specified in |21]. The specification enforces basic param-
eter validation to ensure that values are within acceptable bounds. The RFC
allows for interpretation by using terms such as "SHOULD", "SHOULD NOT"
and "MAY" [6], which introduce flexibility in compliance. As a result, differ-
ent implementations of the TLS protocol can be derived from the same RFC,
leading to variations in behavior. This might also be a source of bugs and non-
interoperability, since one party’s implementation may take a "SHOULD" as a
practical "MUST", and the other party’s implementation taking "SHOULD" as
something really optional as stated in [6] (“SHOULD ... mean that there may
exist valid reasons in particular circumstances to ignore a particular item, but
the full implications must be understood and carefully weighed before choosing a
different course.”).

5 Results

After testing and comparing BouncyCastle’s server response to specific Client
Hello messages generated by our model checker, we successfully generated 16 dis-
tinct ClientHello messages with varying parameters to evaluate the correspond-
ing ServerHello responses. The generated messages included 5 cipher suites, 8
signature algorithms, 2 supported groups, 1 supported versions TLS 1.3, and
2 compression methods. The complete results are available in our GitHub [19]
repository. In all 16 test cases, the server responses were consistent with the
model’s predictions, confirming that our specification accurately represents the
SUT and that the SUT exhibits no flaws within the tested parameters.
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Given the complexity of the task, we focused solely on modifying the Client
Hello parameters, limiting our scope to analyzing the server’s response. Nev-
ertheless, this study demonstrates the feasibility and effectiveness of our test
generation approach. Furthermore, it highlights the potential for expanding test
coverage to more intricate aspects of TLS, such as certificate validation and key
exchange mechanisms.

6 Discussion

Our approach opens-up new possibilities for systematically testing complex sys-
tem like TLS. This becomes particularly important since TLS will have to sup-
port in the near future new quantum resistant cryptographic primitives, called
post-quantum cryptography [18]. A transition period, where both classic and
quantum resistant interactions must be supported by clients and servers, will in-
duce new possibilities for attacks, bugs and interoperability issues. Model check-
ers can systematically explore possible input combinations to produce expected
outputs, uncovering test cases that might otherwise be overlooked. However, our
approach comes with certain limitations. MBT is easier to achieve if the SUT has
a modular design that allows for an easy re-use of methods that send and receive
messages between the SUT and the tester. For instance, BouncyCastle provides
a method to send a ClientHello to the server. However, this method cannot be
reused easily, because it is highly dependent on the state of the protocol, and it
has several dependencies with other methods that must be executed before, but
that we do not want to execute, since we use ProB to model and analyse the pro-
tocol state and drive the test generation. Sending and receiving TLS messages in
the proper format is not an easy task. We had to recode these methods, with very
low-level handling of the messages as bit streams, and little code could be re-used
from the BouncyCastle implementation. We capture messages from the server on
the communication port and manually decode them, thus we must ignore TCP
messages and other irrelevant information for just testing the TLS part of the
communication. We also considered to reuse the widely used OpenSSL imple-
mentation of TLS, but it was not easier, because it is written in very old-school
C and harder to understand. It makes heavy use of function pointers and macros,
instead of using modern object-oriented programming concepts. Unfortunately,
writing the code to send and receive messages in TLS was the most difficult and
time-consuming part of our work. In the next version of our implementation,
we will explore the TLS-Attacker framework |7], a fuzzy-testing tool, to try to
streamline this step. Additionally, refining translation methods between abstract
and concrete messages will be crucial for improving automation. By incorporat-
ing test criteria, we aim to selectively generate test cases that target specific
needs, ensuring comprehensive test coverage and deeper insights into system be-
havior. Our approach differs from the testing offered by industrial providers, as
we specifically test each step of the TLS handshake implementation rather than
only analyzing its overall configuration and final communication result [16].
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